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Understanding the processes that have generated the latitudinal biodiversity gradient and
the continental differences in tropical biodiversity remains a major goal of evolutionary
biology. Here we estimate the timing and direction of range shifts of extant �owering
plants (angiosperms) between tropical and non-tropical zones, and into and out of the
major tropical regions of the world. We then calculate ratesof speciation and extinction
taking into account incomplete taxonomic sampling. We use arecently published
fossil calibrated phylogeny and apply novel bioinformatictools to code species into
user-de�ned polygons. We reconstruct biogeographic history using stochastic character
mapping to compute relative numbers of range shifts in proportion to the number of
available lineages through time. Our results, based on the analysis of c. 22,600 species
and c. 20 million geo-referenced occurrence records, show no signi�cant differences
between the speciation and extinction of tropical and non-tropical angiosperms. This
suggests that at least in plants, the latitudinal biodiversity gradient primarily derives from
other factors than differential rates of diversi�cation. In contrast, the outstanding species
richness found today in the American tropics (the Neotropics), as compared to tropical
Africa and tropical Asia, is associated with signi�cantly higher speciation and extinction
rates. This suggests an exceedingly rapid evolutionary turnover, i.e., Neotropical species
being formed and replaced by one another at unparalleled rates. In addition, tropical
America stands out from other continents by having “pumped out” more species than it
received through most of the last 66 million years. These results imply that the Neotropics
have acted as an engine for global plant diversity.

Keywords: angiosperms, biogeography, diversi�cation rate s, latitudinal diversity gradient, out-of-the-tropics,
phylogenetics, tropical biodiversity

Introduction

The world's biodiversity is unevenly distributed, and most species are found in the tropical regions
of Asia (including Australasia), Africa, and the Americas.Understanding the underlying causes for
the latitudinal biodiversity gradient—the decrease of taxonomic diversity away from the equator—
has fostered extensive and integrative research, and its formation still constitutes a matter of debate
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in evolutionary biology and biogeography (see e.g.,Pianka, 1966;
Hillebrand, 2004; Jablonski et al., 2006; Wiens et al., 2006; Brown,
2014; Huang et al., 2014; Kerkho� et al., 2014; Mannion et al.,
2014; Rolland et al., 2014).

There are three primary explanations for the latitudinal biodi-
versity gradient, which are not mutually exclusive. Often referred
to as the museum hypothesis (Stebbins, 1974), one view is that
there has been a longer period of time for the accumulation of
diversity in the tropics because most of the Earth was essentially
tropical until the Eocene–Oligocene boundary c. 34 million of
years ago (Ma;Zachos et al., 2008). In contrast to the focus on
geological and evolutionary time, it has also been proposed that
higher tropical biodiversity could be caused by higher net diver-
si�cation rates in tropical vs. temperate zones (Mittelbach et al.,
2007), i.e., either due to high speciation, low extinction, or some
combination of both. Why such rates would be di�erent is in
itself a matter of further debate, with a key role being attributed
to kinetics (Brown, 2014). More recently it has been suggested
that it is the inability of tropical lineages to disperse, survive, and
diversify out of the tropics that drives the latitudinal biodiver-
sity gradient, due to intrinsic eco-physiological constraints (niche
conservatism;Kerkho� et al., 2014).

A second striking feature of tropical biodiversity, besides
being consistently higher than in non-tropical regions, is its
uneven distribution among the three tropical regions of the
world. For instance, it has been suggested that the Ameri-
can tropics (the Neotropics) comprise more species of seed
plants than tropical Africa and tropical Asia together, with sim-
ilar patterns for other organismal groups such as amphibians,
mammals, birds, nymphalid butter�ies, and reptiles (Govaerts,
2001; Antonelli, 2008; Antonelli and Sanmartín, 2011and refer-
ences therein). The underlying causes for these inter-continental
di�erences are poorly understood, and could be analogous to
those determining the latitudinal biodiversity gradient.In addi-
tion, di�erences in area and biome sizes, environmental and soil
heterogeneity, climatic history, biological exploration,and dig-
italization of natural history collections (amongst others) could
also play important roles.

Evaluating the validity and relative roles of the factors driving
these fundamental biodiversity di�erences requires combining
evidence from several sources and disciplines, such as palaeon-
tology, ecology and molecular phylogenetics. Among these, two
main components stand out as essential in this pursuit: under-
standing species diversi�cation (i.e., the interplay between spe-
ciation and extinction) and the geographic history of lineages.
In this study we explore these two components at a global and
continental scale. We focus on the Cenozoic history (i.e., the last
66 Ma) of �owering plants (angiosperms), which form the domi-
nant structure of tropical and temperate ecosystems. We ask two
overarching questions:

(1) Have the tropics as a whole, and each tropical region sepa-
rately, been mainly a sink or a source of angiosperm diversity?
More speci�cally, did range shifts (including trans-oceanic
dispersals) between tropical and non-tropical zones, and
into and out of each tropical region, occur in both direc-
tions at a roughly constant pace throughout the Cenozoic,

or were there phases of markedly di�erent range shift rates
and directionality?

(2) Is high diversity correlated with high speciation and/or low
extinction?
More speci�cally, were there signi�cant di�erences in speci-
ation and extinction rates between tropical and non-tropical
zones, and among tropical regions? In such case, are the most
species rich regions also those with highest speciation and/or
lowest extinction?

To address these questions, we calculate and compare rates
of speciation and extinction between tropical and non-tropical
zones and among the world's three tropical regions (in Africa,
Asia, and the Americas), and we infer the timing and direction
of range shifts into and out of each tropical region.

Material and Methods

Data Compilation
Fossils, molecular phylogenies, and species occurrences consti-
tute diverse data sources that, taken together, can be used toinfer
diversity trends through time and space. Here we explore the fea-
sibility of using both neontological and palaeontological data for
addressing the questions outlined in this study.

Fossils
We explored whether fossils could be used to infer diversity
trends through time, as has been recently demonstrated for fos-
sil rich clades such as mammals (Silvestro et al., 2014). For
this we assessed a global data set of angiosperm macrofos-
sil occurrences originally downloaded from the Paleobiology
database (https://www.paleobiodb.org) as described bySilvestro
et al. (2015). The data set included 9,665 records, representing
a total of 297 fossil taxa identi�ed to the genus level; identi�ca-
tions below the generic level were grouped by genus. To investi-
gate potential biases in the data, all records were subdivided by
country and time period (from the Lower Cretaceous to today),
according to the Geological Time Scale ofGradstein et al. (2012).
Unfortunately, a visual inspection of the data (Figure 1) showed
severe spatial and temporal biases. These biases precluded any
sensible analyses of diversity changes in tropical regions, and
we were therefore forced to rely on species distribution and
molecular data alone.

Species Occurrences
We downloaded all geo-referenced (i.e., provided with a lon-
gitude and latitude) species occurrences of angiosperms avail-
able at the Global Biodiversity Information Facility (GBIF,
http://www.gbif.org; downloaded in June 2014). Records �agged
to contain “known coordinate issues” were excluded prior to the
download. One record per location per species was retained. We
then applied basic data cleaning steps on the full data set (c. 40
gigabytes) for identifying and excluding obviously erroneous data
points, such as records with non-numeric coordinates or miss-
ing species names, records with identical latitude and longitude,
and latitudes or longitudes equal to zero (which we considered
to have been left in blank during data entry). For these steps
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FIGURE 1 | Visualization of a global data set of angiosperm
macrofossil occurrences downloaded from the Paleobiology
database as described by Silvestro et al. (2015) . The data set included

9665 records, representing a total of 297 fossil taxa identi�ed to the genus
level. In this �gure, all records were subdivided by country and time period,
according to the Geological Time Scale ofGradstein et al. (2012).
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we used a modi�ed version of the scripts byZanne et al. (2014)
implemented in R (R CoreTeam, 2014).

Geographic Assignments
We coded each species for its presence and absence in four
large regions or operational units (Figure 2): tropical America
(the Neotropics), tropical Africa (the Afrotropics), tropicalAsia
(including Australasia), and all other (non-tropical) regions com-
bined. We delimited those regions by following the same bound-
aries for biomes and ecoregions as adopted by the World Wide
Fund for Nature (WWF), as described inOlson et al. (2001). We
considered the following ecoregions as forming together the trop-
ical region: “Tropical and Subtropical Moist Broadleaf Forests,”
“Tropical and Subtropical Dry Broadleaf Forests,” “Tropical and
Subtropical Coniferous Forests” and “Tropical and Subtropi-
cal Grasslands, Savannas, and Shrublands.” All other ecoregions
were merged to form our “non-tropical” region. We classi�ed
“Flooded Grasslands and Shrublands” as tropical or non-tropical
depending on the surrounding biome and geographic position.
We acknowledge that the WWF biome and ecoregion classi�-
cation is to some extent arbitrary and based on expert opinion,
rather than directly data derived (Vilhena and Antonelli, 2014).
However, we consider that the level of accuracy of this classi�ca-
tion is adequate for the purposes of this study, and superior to a
classi�cation based solely on latitudinal limits or a purely climatic
classi�cation without proper consideration of biotic components
(Kottek et al., 2006).

For each continent, all polygons for biomes classi�ed as “trop-
ical” were merged into a single polygon, and the same was done
for all “non-tropical” biomes, which were merged into a single
multi-polygon comprising areas in both the southern and the
northern hemisphere. This means that each tropical region com-
prised e.g., both rainforests and savannas, but excluded very dry

areas (such as the Sahara in Africa, the Caatinga in South Amer-
ica and parts of the Deccan plateau in India) as well as the coldest
habitats (e.g., high altitude areas in the South American Andes
and along the African Great Rift Valley) located within the tropi-
cal belt (between c. 23� north and c. 23� south). Although smaller
operational units would have been interesting from a biological
perspective, e.g., separating rain forests and savannas, it would
inevitably incur a considerable loss of data and statisticalpower
for the subsequent analyses. We utilized the software package
SpeciesGeoCoder v.1.0 (Töpel et al., 2014) to code species into
operational units. The resulting polygons can be retrieved from
the authors upon request.

To further identify potential biases caused by erroneous geo-
references (e.g., due to wrong coordinates or species identi�ca-
tions), we applied a set of arbitrary thresholds in order for a
species to be coded as “present” in a certain operational unit.
Three �lters were de�ned, with increasingly more strict criteria,
as outlined inTable 1. We implemented functions and scripts
to carry out this data �ltering in R (scripts available from the
authors).

There was no major loss of occurrence records by going from
Filter 1 to the more conservative Filter 2 (see Results below).We
therefore chose to perform our analyses on range transitionson
the data set generated under Filter 2, and the diversi�cation rate
analyses using the Filter 3 data set, due to the fact that the method
we employed cannot handle widespread taxa (see below).

Molecular Phylogeny
We chose to work with a single dated tree rather than perform-
ing a meta-analysis of individual trees (e.g.,Jansson et al., 2013,
so that divergence times among clades would be more directly
comparable with each other. We therefore used the recent
fossil-calibrated molecular phylogeny of angiosperms from

FIGURE 2 | The four regions (operational units) used in this
study. Tropical regions are shown in red (dark red: rain forests, light
red: savannas), non-tropical regions are shown in blue. Dots indicate

species occurrence records of angiosperms (c. 20 million) used in
this study and obtained from the Global Biodiversity Information
Facility (GBIF).
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TABLE 1 | Automated criteria for recording presence of each spe cies in
each operational unit de�ned in Figure 2, departing from raw G BIF
species occurrence data.

Filter Minimum Minimum Presence on more

# records % records than one polygon

None 1 – Allowed

1 3 – Allowed

2 3 10 Allowed

3 3 10 Not allowed*

*Under this �lter, presence was only coded in the region with the highest number of
records.

Zanne et al. (2014), with 30,535 species. The phylogeny was based
on data from seven gene regions and families and orders were
constrained to the APG III classi�cation system (Bremer et al.,
2009). To evaluate whether the level of taxonomic representation
was consistent among regions, which could otherwise bias our
subsequent analyses, we calculated the ratio between the num-
ber of species sampled in the phylogeny and the total number of
species recorded in each of the four regions in the GBIF database.

Tropical Conservatism
We tested whether species in each of the regions de�ned
(Figure 2) were clustered in the angiosperm phylogeny (i.e.,
showed strong phylogenetic signal) using Bayesian Tip-
Signi�cance testing implemented in the software BaTS v. 1.0
(Parker et al., 2008). We compared the observed distribution
of states in the reference phylogeny against 100 randomized
replicates, which were used to compute 95% credible intervalsof
trait distributions.

Range Shifts through Time
We used the region-coded, dated phylogeny of angiosperms to
estimate the timing and directionality of range shifts between
tropical and non-tropical lineages, and among the three tropical
regions of the world. Since our analyses focused on the Ceno-
zoic, when the three tropical continents were already widelysep-
arated by oceans (Mcloughlin, 2001), these events should include
both trans-oceanic dispersals as well as range expansions over
continuous land between the tropical and non-tropical zone.

We used stochastic character mapping (Huelsenbeck et al.,
2003) to reconstruct histories of shifts across biogeographic
regions (e.g.,Clark et al., 2008). We calculated the relative
number of transitions through time (Silvestro, 2012; Fernández-
Mendoza and Printzen, 2013) as the absolute number of tran-
sitions divided by the number of nodes in 5 million year time
bins. We did this to account for the fact that even under a sim-
ple birth model of speciation the number of lineages in a phy-
logeny tends to increase exponentially, therefore increasing the
possibility of range shifts to occur toward the present (Silvestro,
2012). Credible intervals around the relative number of transi-
tions through time were obtained by simulating 100 stochastic
histories of geographic range evolution. We optimized the origi-
nal scripts implementing this method and implemented them in

TABLE 2 | Proportion of species included in the phylogeny for e ach plant
order analyzed.

Order Total # spp # In diversi�cation Sampling Sampling

analyses in tropics outside

tropics

Apiales 3114 478 0.07 0.17

Asparagales 13956 1601 0.08 0.13

Asterales 19213 1958 0.03 0.12

Brassicales 2945 497 0.07 0.17

Caryophyllales 7992 945 0.07 0.11

Ericales 8305 1233 0.09 0.18

Fabales 15049 2050 0.09 0.13

Gentianales 11583 1052 0.08 0.07

Lamiales 14813 1397 0.04 0.12

Malpighiales 10882 1219 0.09 0.09

Malvales 4398 446 0.07 0.10

Myrtales 8439 825 0.06 0.12

Poales 13872 2190 0.06 0.18

Ranunculales 2776 468 0.07 0.18

Rosales 6396 852 0.09 0.13

Sapindales 4991 667 0.10 0.12

Solanales 3298 512 0.10 0.14

Species numbers follow those in the GBIF Backbone Taxonomy. (Sampling in tropics D
number of species in the diversi�cation analyses classi�ed as tropicaldivided by the total
number of species classi�ed as tropical; Sampling outside the tropicsD number of species
in the diversi�cation analyses classi�ed as outside the tropics divided by the total number
of species classi�ed as outside the tropics).

R using phytools (Revell, 2012) to perform stochastic mapping
(new scripts available from the authors).

Diversi�cation Rates
We calculated rates of speciation (l ) and extinction (m) for each
tropical region separately, as well as for tropical and non-tropical
species. For these analyses we used the Multiple State Speciation
and Extinction method (MuSSE) as implemented in diversitree
(Fitzjohn, 2012). We analyzed 17 subclades separately (Table 2),
which we chose to correspond to plant orders. This division was
necessary due to computational limitations in analysing thefull
tree under this method, but also carried the advantage of creat-
ing a sample of rate estimates across di�erent angiosperm clades.
We did not explore the e�ect of splitting the angiosperm tree into
di�erent numbers of subclades or along di�erent branches, since
there would be an almost endless number of possible combina-
tions. We accounted for varying levels of taxonomic samplingin
the phylogeny by calculating the sampling fraction of each order.

We compared the signi�cance of results from the diversi�-
cation analyses using Analysis of Variance (ANOVA), and then
applied the Tukey's honest signi�cant di�erence (HSD) test in
order to identify outstanding values. To account for intrinsic
di�erences among plant orders, we normalized the rates of spe-
ciation and extinction for each order over all regions. Thiswas
done by dividing each rate by the sum of the rates in all regions
analyzed. In all analyses, we used mean values of rates.
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Results

Data Compilation
Figure 3 shows the number of species and occurrences coded
into each of the regions de�ned, the number of those that were
also present in the phylogeny, and the in�uence of each �lter
applied. The raw data set of species occurrence points (after
applying the basic cleaning steps described above) comprised a
total of 24,908,478 records pertaining to 188,655 species (pur-
ple bars,Figure 3). Many species could not be matched between
the species occurrence data set and the molecular phylogeny
used, due to taxonomic issues that could not be easily solved

(e.g., synonymisation and di�erent taxonomic circumscriptions),
and the fact that numerous species did not occur in both data
sets. Despite these issues, a total of 27,585 species could be fully
matched between the molecular phylogeny and the occurrence
data set, representing 14.6% of the total number of currently
accepted species of angiosperms (273,174 species, according to
http://www.theplantlist.org; accessed September 2014). The data
set generated under Filter 2, used for all analyses except MuSSE
and BaTS, comprised a total of c. 20 million occurrence points
and between c. 500 to 6600 species per region (Figure 3).

The proportion between species with geo-references and
species in the phylogeny ranged from c. 8 to 15% among regions

FIGURE 3 | Number of angiosperm species and occurrences in the
four regions de�ned in this study. The bars show the in�uence of
different cleaning steps on the data set (see alsoTable 1 ). (A) Number
of species per dataset and geographic region,(B) number of
occurrence points per dataset and geographic region,(C) number of
species per dataset and geographic region (Tropical vs. Non-Tropical),
(D) number of occurrence records per dataset and geographic region

(Tropical vs. Non-Tropical). Purple: GBIF download; blue: species that
are included (and could be matched) in the phylogeny; dark green: Filter
1 (minimum 3 occurrences to be coded as present in a given region);
light green: Filter 2 (additionally 10% of all occurrences per species
needed to be coded as present); orange: Filter 3 (additionally
widespread species restricted to one region). The Filter 2 data set was
used for all analyses except for MuSSE and BaTS.
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(Table 3). All tropical regions were similarly represented in the
phylogeny, with only 2% di�erence between the best sampled
tropical region (tropical Asia) and the least sampled one (tropical
America). Non-tropical regions were better sampled phylogenet-
ically than tropical ones (15% vs. 9%, respectively).

Phylogeny-based Analyses
Figure 4A shows the angiosperm phylogeny and the coding of
each species as occurring in each of the four regions de�ned,
whereasFigure 4Bshows the coding in tropical and non-tropical
regions. The Bayesian Tip-Signi�cance testing indicated that
species in all regions (Figure 2) are highly clustered phylogenet-
ically (p < 0:001 for all three statistical tests implemented in
BaTS: parsimony score, association index and maximum exclu-
sive single-state clade).

The results from the range shift analyses are summarized in
Figure 5. Con�dence intervals of range shift rates were gener-
ally large and mostly overlapping, but the width of their ranges
decreased toward the present. During most of the Cenozoic,
mean emigration rates (out of the tropics) were slightly higher
or very similar to migration into the tropics (Figure 5A). From
c. 58 to c. 44 Ma, immigration into the tropics showed a small
decrease. Both tropical Africa (Figure 5B) and tropical Asia
(Figure 5C) showed similar mean rates of immigration and emi-
gration through time, except for some �uctuations (especially in
Asia, prior to c. 25 Ma). In contrast, there was a consistently
higher rate of emigration from tropical America (Figure 5D).
These rates only reached equilibrium c. 14 Ma.

The region-speci�c rates of speciation and extinction inferred
using the MuSSE model are shown inFigure 6, calculated under
the sampling fractions for each order indicated inTable 2.Indi-
vidual estimates are reported in Supplementary Table S1, and
signi�cance values in each set of comparisons are summarized
in Table 4.

The median values of both speciation and extinction rates
were higher in non-tropical than in tropical zones, but these esti-
mates showed large overlap in their con�dence intervals andare
not statistically di�erent (Figures 6A,B). In contrast, both the
speciation and the extinction rates estimated for tropical America
were signi�cantly higher than those estimates for tropical Africa
and tropical Asia (Figures 6C,D, p < 0:05 for speciation, and
p < 0:001 for extinction).

TABLE 3 | Number of species recorded in each of the regions de�n ed for
the analyses (for which georeferenced data were available from GBIF),
number of those species that could be included in the range shi ft analysis
(after applying Data Filter 2; see Table 1 and Figure 3), and th eir sampling
fraction.

Region Total # # In range shift Sampling

spp (GBIF) analyses fraction

African tropics 26194 2460 0.09

American tropics 66844 5342 0.08

Asian tropics 26854 2686 0.10

Total tropics 115196 9913 0.09

Non tropical 103682 15666 0.15

Discussion

The Geographic History of Tropical Angiosperms
Our analyses of historical range shift events (Figure 5) reveal
some interesting patterns. During the �rst half of the Ceno-
zoic (from 66 until c. 30 Ma), our results indicate that most
range shifts took place out of the tropics. This result corrobo-
rates a recent meta-analysis of 111 dated phylogenies, includ-
ing seven clades of angiosperms (Jansson et al., 2013), and
also re�ects the directionality observed from the fossil record
of marine bivalves for the last 11 Ma (Jablonski et al., 2006,

FIGURE 4 | Angiosperm phylogeny used for the range shift and
diversi�cation analyses, pruned from Zanne et al. (2014) . The tree
contains c. 22,600 terminal species and shows(A) the codi�cation into each
one of the continental-level regions de�ned inFigure 2 , and (B) the
codi�cation of all species as tropical or non-tropical. Species in each of the
regions de�ned are highly clustered phylogenetically according to Bayesian
Tip-Signi�cance testing (p < 0:001).
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FIGURE 5 | Results from the range shift analyses using stochast ic
mapping. The plots show the number of range shift events (including
long-distance dispersals and continuous range expansions) through time,
relative to the available number of lineages (see Methods for details).(A)
Inferred number of range shift events into and out of the tropical zone; (B–D)
rate estimations for tropical Africa, Asia, and America, respectively. The 95%

con�dence intervals are shown as shaded areas in all plots. In(A), a global
mean temperature curve (Hansen et al., 2008) is shown in red for
comparison. The yellow boxes in the other �gures are shown as references
for the discussion. EECO, Early Eocene Climatic Optimum; PETM,
Paleocene-Eocene Thermal Maximum; GAARlandia, Greater Antilles and
Aves Ridge landbridge.

2013), Overall, range shifts appear poorly associated in time
with climate, approximated through a mean global temperature
curve (Figure 5A). Some correspondence may however include
a c. 30% decrease in range shifts into the world's tropics dur-
ing the highest temperature levels of the Cenozoic, around the
Early Eocene Climatic Optimum c. 52 Ma (Zachos et al., 2008).
An additional overall decrease is observed coinciding withthe
Mid-Miocene Climatic Optimum c. 15 Ma. Why global warm-
ing would have in�uenced range shifts among tropical and non-
tropical regions as observed here is puzzling, and may re�ect
large-scale but poorly understood vegetational changes. Wealso
note that range shifts into and out of the tropics reached an
equilibrium only a few million years after the Eocene-Oligocene
transition, a global cooling event associated with the gradual
glaciation of Antarctica (Zachos et al., 2008).

Range shifts into and out of tropical Africa (Figure 5B)
occurred in both directions at about the same rate, and showed
the least �uctuations among the three tropical regions ana-
lyzed. The initial formation of the Sahara c. 7 Ma (Zhang et al.,
2014) did not seem to leave a considerable footprint on these
rates.

Range shifts into and out of tropical Asia (Figure 5C) were
fairly similar and exhibited most �uctuations prior to c. 23
Ma. Major events in that period include the collision of India
with Asia c. 55–45 Ma, the uplift of the Qianghai-Tibetan
Plateau c. 45–20 Ma, and the establishment of the monsoon

system in Southeast Asia c. 35–20 Ma (Favre et al., 2014).
The “out-of-India” hypothesis postulates that a number of
African-derived organisms, including both animals (Bossuyt and
Milinkovitch, 2001) and plants (Conti et al., 2002), rafted on the
Indian subcontinent and dispersed into Asia after the collision of
these landmasses. This dispersal route has received support from
the molecular analyses of several taxa (Karanth, 2006). We note a
temporal correlation between the initial collision (c. 55 Ma) and
the shift from tropical Asia being mainly a sink of lineages toit
becoming a net source of angiosperm diversity. Another major
event in the Cenozoic is the geological rejuxtaposition of South-
east Asia, which created a stepping-stone route between Oceania
and Asia from c. 40 Ma (Hall, 2009). This event might be re�ected
in our results by the increase of lineages entering tropical Asia
around that time, leading again to a net input of non-tropical
lineages into tropical Asia.

Range shifts out of tropical America were consistently more
frequent that those entering it, throughout most of the Ceno-
zoic (from c. 65 to 15 Ma;Figure 6D). A remarkable peak in
emigration shifts was estimated at c. 57 Ma, which was simulta-
neously associated with a modest decrease in immigration events.
These results imply a c. 3 times higher rate of lineages leaving the
Neotropics than shifts in the opposite direction. We note that this
peak corresponds closely in time (allowing for the uncertainties
in molecular dating) to the Paleocene-Eocene Thermal Maxi-
mum (PETM;Figure 5A). This was a short-lived (c. 10,000 years)
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FIGURE 6 | Results from the diversi�cation rate analyses unde r the
MuSSE model. (A) Speciation rates per geographic region (tropical vs.
non-tropical); (B) Extinction rates per geographic region (tropical vs.
non-tropical); (C) Speciation rates for the three tropic regions;(D) Extinction
rates for the three tropic regions. All results are normalized against each

other. Each data point represents an angiosperm plant order(Table 2).
Boxes indicate the interquartile range (IQ) of all estimates, with the median
shown as a horizontal line and the whiskers indicating data range outside the
quantiles.** and *** denote signi�cant differences (p < 0:05 and p < 0:001,
respectively; ANOVA). See Methods for details.

TABLE 4 | Variables and statistical tests based on the MuSSE a nalyses of the molecular phylogeny of angiosperms.

Variable and sample for comparison p-value n (orders/region)

Speciation: tropical vs non-tropical 0.521 17

Extinction: tropical vs non-tropical 0.516 17

Speciation: among tropical regions 0.0107 17

Extinction: among tropical regions 0.00839 17

TUKEY HSD FOR ANOVA AMONG TROPICAL REGIONS

Rate America vs. Africa America vs. Asia Africa vs. Asia Outstand ing region

Speciation 0,0209 0,0256 0,9965 American tropics

Extinction 0,0175 0,0205 0,9979 American tropics

Signi�cant values at 95% con�dence levels are underscored.

event which took place c. 56.3 Ma and was characterized by
mean global temperatures reaching above 12� C from today's level
(Zachos et al., 2008). Evidence from the fossil record show that
considerable changes occurred at the PETM in Neotropical rain-
forests, with rapid origination of new taxa and changes in veg-
etation composition due to range shifts and local extirpations
(Jaramillo et al., 2010). It seems therefore reasonable to suggest

that newly speciated taxa might, at least in part, account for the
inferred peak.

The high rate of range shifts out of the Neotropics is partic-
ularly noteworthy in comparison to the other tropical regions,
where we did not �nd this di�erence between immigration and
emigration. Thus, our results suggest that the Neotropics have
functioned as a “species pump” for the rest of the world during
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the �rst 50 million years of the Cenozoic, but in particular during
the Paleocene and early Eocene. The reasons for this requirefur-
ther investigation, but re�ect the patterns observed in marine
bivalves in which clades with higher diversi�cation were the most
likely to expand out of the tropics (Jablonski et al., 2013).

A second event of potential signi�cance for range shifts in the
Neotropics was the establishment of a stepping-stone land bridge
reducing the gap between North and South America, known as
the Greater Antilles and Aves Ridge or GAARlandia (Iturralde-
Vinent and Macphee, 1999; Pennington and Dick, 2004). The
existence and role of the GAARlandia in facilitating dispersals
remains controversial (Ali, 2012), but the hypothesis has gained
recent support in phylogeographic analyses of several animal
taxa, including spiders (Crews and Gillespie, 2010), amphibians
(Alonso et al., 2012) and cichlids (�Rí�can et al., 2013). We did not
detect any de�nite signal of the GAARlandia in our estimationof
range shifts for angiosperms, except perhaps for a slowdecrease
in shifts entering the Neotropics (which, if con�rmed, couldalso
be linked to the global temperature decline at Eocene/Oligocene
transition).

Building up Tropical Biodiversity
Our phylogeny-based estimates of speciation and extinction rates
(Figure 6) showed that angiosperms in tropical regions both
speciated and went extinct at lower rates than in temperate
regions, although this di�erence was not signi�cant (p > 0:05;
Table 4). This result re�ects the lack of conclusive evidence on
this issue. Several studies have suggested higher rates of diver-
si�cation (de�ned as speciation minus extinction) in the trop-
ics (Mittelbach et al., 2007), including amphibians (Pyron and
Wiens, 2013), mammals (Rolland et al., 2014), and squamate rep-
tiles (Pyron, 2014). Others have found temperate regions to have
higher diversi�cation rates, based on the analysis of birds and
mammals (e.g.,Weir and Schluter, 2007). An analysis of bird
diversi�cation showed yet a third pattern, where the major dif-
ferences in diversi�cation rates were between the western and
eastern hemispheres, rather than between tropical and temper-
ate zones (Jetz et al., 2012). Our results are similar to those
obtained byJansson et al. (2013), who found no signi�cant dif-
ferences in the net diversi�cation between tropical and temperate
sister lineages. Overall, our results suggest that the higher diver-
sity of angiosperms in tropical compared to non-tropical regions
is not primarily dependent on higher speciation and/or lower
extinction in the tropics.

In contrast, our results show signi�cantly di�erent rates of
speciation and extinction amongst the tropical regions of the
world (Figures 6C,D). Neotropical angiosperms speciated on
average about 2–2.5 times faster than angiosperms in tropical
Asia and tropical Africa. However, they also went extinct about
2–2.5 times faster than in tropical Asia. These high rates of speci-
ation and extinction in the Neotropics indicate a rapid evolution-
ary turnover, i.e., species being formed and replacing each other
at an unparalleled rate. This result is also in accordance to the
observation that South American plant diversity is characterized
by a relatively large number of recent, species-rich radiations,
for instance in the tropical Andes (Hughes and Eastwood, 2006;
Drummond et al., 2012; Madriñán et al., 2013) and Amazonia

(Richardson et al., 2001; Erkens et al., 2007). Diversi�cation in the
region has been linked to the substantial changes in the landscape
in the Neogene (Hoorn et al., 2010; Wesselingh et al., 2010), but
several taxa may have an even younger origin in the Quaternary
(Rull, 2011; Smith et al., 2014).

Reliability of Results: Pushing the limits of
Biological Data
Evolutionary biology and biogeography are now experienc-
ing a tremendous accumulation of data, including molecular
sequences, fossils, and species occurrences, with a hitherto unre-
alized scienti�c potential. An emerging question, however,is to
what extent available data and methods are su�cient to pro-
vide us with reliable answers to some of the most fundamental
questions in biology. A critical evaluation of the data, methods
and assumptions is therefore crucial but often underestimated in
evolutionary studies.

Whenever possible, palaeontological data should be studied in
conjunction with molecular-based evolutionary analyses (Quen-
tal and Marshall, 2010; Fritz et al., 2013; Silvestro et al.,2014).
However, our assessment of angiosperm fossils currently avail-
able (Figure 1) suggests that data unavailability is a serious issue
for angiosperms. The number of angiosperm fossil occurrences
publicly available varied considerably among countries and geo-
logical periods, with some countries (e.g., USA, Russia) and peri-
ods (e.g., the Miocene) being considerably better represented
than others. On a continental scale, lack of data is particularly
critical for Africa, Southeast Asia and Australasia; but even within
relatively well-sampled continents (such as Europe and South
America) there are strong regional biases among countries.

Similar to the case of fossil data, there is general skepti-
cism concerning the use of publicly available species occurrences
for understanding species distributions, especially from non-
veri�ed databases such as GBIF. Distribution data have been
shown to contain important taxonomic, temporal and spatial
biases (Boakes et al., 2010). The question of whether bioinfor-
matic tools may correctly infer biodiversity patterns despite those
biases remains largely unanswered, and will also depend on the
scale and taxa in focus—with higher accuracy expected for well-
studied taxa and large spatial units. Recent studies suggest that
automated data handling procedures are able to yield biologi-
cally realistic results, if enough care and appropriate techniques
are employed (Zanne et al., 2014; Engemann et al., 2015; Mal-
donado et al., accepted). In other cases, the manual validation by
taxonomists appears crucial, e.g., for the assessment of species'
conservation status for the IUCN Red List of Threatened Species
(Hjarding et al., 2014).

Our approach of automatically coding species into regions
and calculating sampling fractions using GBIF data and poly-
gons is not intended to replace the time-consuming work
by taxonomists. However, it constitutes an additional, data-
derived and spatially explicit approach that deserves further
exploration and validation. Estimating global and regional pat-
terns of species richness and biodiversity remains a notoriously
di�cult and contentious topic, with no consensus reached (Gov-
aerts, 2001; Crane, 2004; Ungricht, 2004; Wortley and Scot-
land, 2004; Chapman, 2009; Mora et al., 2011). In addition,
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there is no general agreement on how to best de�ne, delimit
and name biogeographical regions (Kreft and Jetz, 2010; Holt
et al., 2013; Vilhena and Antonelli, 2014), with the implica-
tion for this study that the world's three tropical regions are
di�erently circumscribed in the literature. Our study suggests
that a relatively stable assignment of species to large regions (as
in Figure 2) may be attained through simple, automated �lter-
ing steps, in which the addition of increasingly restrictive cri-
teria for coding species results in relatively small di�erences
(Figure 3).

The reconstruction of ancestral character states (such as mor-
phology and geographic distribution) along phylogenies is now
common practice in evolutionary studies, but only make sense
when the traits analyzed are phylogenetically structured—i.e.,
they are not randomly distributed across the tree. Since we found
highly signi�cant clustering of species pertaining to the same
geographic assignment in each of the regions de�ned (Figure 4),
we consider that the geographic coding and reconstruction anal-
yses using stochastic mapping are suitable for the goals of
this study.

The low taxonomic sampling in the phylogeny (Tables 2, 3)
may in�uence the calculation of range shifts. However, two con-
siderations suggest that this in�uence is unlikely to signi�cantly
a�ect the general patterns obtained. First, taxonomic sampling
varied by only 2% or less among the tropical continents. Second,
even at low sampling it should be possible to recover a rela-
tively large proportion of range shifts among the regions outlined.
This is because biological sampling is far from being random,
with an over-representation of deep nodes that re�ect morpho-
logical and geographical variations in taxa (Hohna et al., 2011;
ter Steege et al., 2011; Cusimano et al., 2012). In other words,
even if only a couple of species were sampled from a species-
rich but strictly African clade, our analyses should be ableto
detect when that clade arrived in Africa. Further simulations
would be helpful to assess at which sampling levels the calcula-
tion of continental-level range shifts stabilize and become fully
reliable.

Diversi�cation rates of angiosperms have varied widely among
clades (Magallón and Sanderson, 2001) and through time (Silve-
stro et al., 2015). Inferring the dynamics between speciation and
extinction through the Cenozoic for each continent should there-
fore provide important insights into the evolution of their �oras.
However, the taxonomic sampling in the angiosperm phylogeny
was at or below 10% for all tropical regions (Figure 3, Table 3).
Sampling levels already below c. 80% are bound to �aw diver-
si�cation rate estimates under current methods, often showing
slowdowns in net diversi�cation that represent methodological
artifacts (Cusimano and Renner, 2010). Expectations on how the
missing species are distributed in a phylogeny depending on the
sampling scheme may increase the accuracy of diversi�cation
analyses (Stadler and Bokma, 2013). However, no method has
been developed so far that is capable of con�dently dealing with
the level of taxonomic sampling observed in the angiosperm phy-
logeny we used. The MuSSE analyses carried out here can only
provide point estimates for the orders surveyed, but should con-
stitute a more powerful approach given the relatively large size of
the phylogeny utilized.

Future Prospects: More Data, Improved Methods
The inevitable incompleteness of the fossil record represents a
limit to macro-evolutionary analyses that can be carried out
using currently available data. However, the development of
new methods has shown that even incomplete fossil data can
provide essential information in estimating trends of phenotypic
evolution (Slater and Harmon, 2013) and species diversi�cation
dynamics (Silvestro et al., 2014). Such models should be ideally
extended to historical biogeography and might shed new lighton
the dynamics of migration of lineages through time and among
regions. In particular, fossils provide an important resourcefor
improving biogeographic reconstructions, as they provide infor-
mation on past species ranges and may therefore further re�ne
or validate ancestral range analyses as performed here (Ron-
quist et al., 2012; Wood et al., 2013; Lawing and Matzke, 2014).
Although correct fossil placement on phylogenies can be prob-
lematic, their potential in this area is still insu�ciently explored
(Wood et al., 2013).

Phylogeny-based diversi�cation analyses are powerful com-
plements to palaeontological inferences. However, they still
require further development to be con�dently used with poorly
sampled phylogenies—as is often the case in plants, regardless
of geographic region (Figure 3 and Table 3). Until sampling
improves to a much higher level (both taxonomically and geneti-
cally), or methods currently used successfully with e.g., mammals
(Morlon et al., 2011; Stadler, 2011) are adapted and validated for
plants, we remain with limited power to assess the dynamics of
diversi�cation rates through time and across clades.

Conclusions

Here we have shown that currently available biological data—
including species occurrences and dated phylogenetic trees—
hold the potential of providing novel and important insights into
large-scale patterns of species diversi�cation and biogeography.

The geographic history of angiosperms involved a large num-
ber of range transitions between tropical and non-tropical zones,
as well as into and out of the world's three tropical regions. Global
climatic changes and major geological events are likely to have
in�uenced some of the observed changes in range shifts, such
as the early Eocene climatic conditions and the large geographic
recon�gurations in tropical Asia (outlined inFigures 5A,C).
However, these are temporal correlations that require further val-
idation. We cannot rule out that some of the �uctuations we
observed in the mean rates of range shifts re�ect instead the
stochastic nature of dispersals and biome shifts, and/or from lack
of phylogenetic signal for events that happened tens of millions
of years ago.

No signi�cant di�erences could be found between the speci-
ation and extinction of tropical and non-tropical angiosperms.
This result re�ects the lack of conclusive evidence on globaldiver-
si�cation patterns for di�erent organism groups. Although diver-
si�cation estimates need to be continuously revalidated with the
addition of more genetic and taxonomic data and increasingly
robust methods, our results suggest that the latitudinal diver-
sity gradient in angiosperms is not primarily caused by di�er-
ences in speciation or extinction rates. Longer time for speciation
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and tropical niche conservatism might therefore constitutebetter
models for explaining tropical angiosperm diversity.

Continental di�erences in tropical angiosperm diversity show
clearer patterns, adding to our knowledge on the global patterns
of plant diversity (Kier et al., 2005; Barthlott et al., 2007; Kreft and
Jetz, 2007; Kreft et al., 2010; Mutke et al., 2011). The outstanding
species richness of angiosperms found today in the Neotropics
as compared to tropical Africa and tropical Asia is associated
with signi�cantly higher speciation and extinction rates inthe
Neotropics (Figures 6C,D)—and thereby higher species turnover
and shorter average longevity of species. The causes underlying
these di�erences remain elusive, but might be associated with the
substantial landscape dynamics that have a�ected northern South
America since the Miocene, among other continent-speci�c dif-
ferences such as biome sizes, niche space, and climatic history.
Our results also show that Neotropical diversity, once generated
in situ, was to a large extent “pumped out” of the Neotropics
(Figure 5D).
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