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One crucial test for any quantitative model of the brain is toshow that the model can
be used to accurately decode information from evoked brain activity. Several recent
neuroimaging studies have decoded the structure or semantic content of static visual
images from human brain activity. Here we present a decodingalgorithm that makes it
possible to decode detailed information about the object and action categories present in
natural movies from human brain activity signals measured by functional MRI. Decoding
is accomplished using a hierarchical logistic regression (HLR) model that is based on
labels that were manually assigned from the WordNet semantic taxonomy. This model
makes it possible to simultaneously decode information about both speci�c and general
categories, while respecting the relationships between them. Our results show that
we can decode the presence of many object and action categories from averaged
blood-oxygen level-dependent (BOLD) responses with a highdegree of accuracy (area
under the ROC curve> 0.9). Furthermore, we used this framework to test whether
semantic relationships de�ned in the WordNet taxonomy are represented the same way
in the human brain. This analysis showed that hierarchical relationships between general
categories and atypical examples, such asorganism and plant, did not seem to be
re�ected in representations measured by BOLD fMRI.

Keywords: fMRI, decoding, natural images, WordNet, structur ed output

INTRODUCTION

In the past decade considerable interest has developed in decoding stimuli or mental states from
brain activity measured using functional magnetic resonance imaging (fMRI). Early results in this
�eld ( Kay et al., 2008; Mitchell et al., 2008; Naselaris et al., 2009; Nishimoto et al., 2011) have created
substantial excitement over the prospect of futuristic non-invasive brain-computer interfaces that
could perform “brain reading.” These studies have shown thatsubstantially more information can
be recovered from BOLD fMRI than many had previously believed (Kay et al., 2008). Furthermore,
one recent study from our laboratory showed that it is possibleto decode the appearance of rapidly
changing natural movies using fMRI (Nishimoto et al., 2011), challenging the received wisdom that
fMRI is only suitable for studying slow phenomena. Here we extend our previous work by decoding
which categories of objects and actions are present in natural movies.

Brain decoding can be viewed as the problem of �nding the stimulus,S, that is most likely to
have evoked the observed BOLD responses,R, under the probability distributionP(S | R). To date,
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two general approaches have been been used to solve this
problem: Bayesian decoding and direct decoding. In Bayesian
decoding one constructs an explicit model ofP(R | S)in order
to predict the response based on the stimulus. Then, Bayes' rule
is used to invert the conditional probability:P(S | R)D P(R
| S) P(S) / P(R).This approach has been used to decode the
visual appearance and semantic category of static natural images
(Naselaris et al., 2009), the visual appearance of natural movies
(Nishimoto et al., 2011), and the semantic category of isolated
visual objects or words (Mitchell et al., 2008). However, Bayesian
decoding requires the construction of a prior distribution over
stimuli, P(S), and this is impractical when the decoding space is
large (e.g., when decoding natural scenes or movies). In some
cases, this issue can be solved by using a large empirical prior
(Naselaris et al., 2009; Nishimoto et al., 2011). However, we have
no way to estimate the empirical prior for categories appearing
in natural movies. This makes it di�cult to apply the Bayesian
decoding framework to this problem.

The other popular approach to this problem is direct
decoding. In this approach, one constructs an explicit model
of P(S | R)that directly predicts the stimulus based on the
response. Direct decoding has been used to decode which of two
visual categories is being viewed (Haxby et al., 2001; Carlson
et al., 2003; Cox and Savoy, 2003), which of two categories a
subject is dreaming about (Horikawa et al., 2013), and which
objects are present in static natural visual scenes (Stansbury et al.,
2013). However, for several reasons direct decoding is usually
not optimal for decoding objects and actions in natural scenes
from brain activity. First, direct decoding implicitly assumes that
each decoded feature is independent, but objects and actionsin
natural scenes tend to be correlated with one another (although
recent work from our lab has shown that it is possible to work
around this issue by transforming the stimuli into a feature
space where the independence assumption is validStansbury
et al., 2013). Second, each object or action has many potential
category labels that are related in a nested, hierarchical structure.
For example, a1993 Mercury Sablecould also be called a
station wagon, a car, a motor vehicle, etc. These labels are not
independent and so should not be decoded independently. One
solution to this issue would be to decode only one label in the
hierarchy, such as the basic-level category (Rosch et al., 1976),
which in this example would likely becar. However, a basic
level category decoder would ignore fMRI signals related to
subordinate categories (such asstation wagonor 1993 Mercury
Sable), which might carry additional information about the visual
scene. Furthermore, obtaining basic-level category labels would
require extensive manual labeling from multiple observers.For
these reasons, here we elected to use a di�erent approach in which
we decoded categories at many di�erent levels within a hierarchy
simultaneously.

Our direct decoding approach, hierarchical logistic regression
(HLR), decodes which object and action categories are present
in natural movies while capturing hierarchical dependencies
among them. Logistic regression is a natural choice for modeling
a system with gaussian inputs (such as BOLD responses) and
binary outputs (such as the presence or absence of a speci�c
category). The most basic logistic regression approach would

be to build a separate model for each category. However, this
approach implicitly assumes that each category is independent
from all the others. This assumption is clearly false when the
categories are related hierarchically and it can lead to nonsensical
results, such as decoding that a scene contains acar but not a
vehicle.

We solved this problem by combining multiple logistic
regression models together hierarchically. The HLR model
decodes the conditional probability that each category is
present, given that its hypernyms (its superordinate or parent
categories in the hierarchy) are present. These conditional
probability relationships can be represented as a graphical model
(Figure 1). The graphical model shows, for example, that the
joint probability that a scene contains the categoriesmotor
vehicle, car, andstation wagon(given a vector of brain responses,
R) can be factorized into a product of conditional probabilities:

P(motor vehicle; car; station wagonjR)

D P(motor vehiclejR) � P(car jmotor vehicle; R)

� P(station wagonjcar; R)

Thus, the joint probability that a scene contains the categories
motor vehicle, car, and station wagonis equal to the product
of three conditional probabilities (note that this example is
simpli�ed; in our actual datamotor vehicleis not a top-
level category). Further, the marginal probability that the
category station wagonis present in the scene is identical
to this joint probability. This model does not treat each
category independently. Instead, it assumes that each category
is conditionally independent of the others, given its hypernyms.
This structure enforces the sensible constraint that the probability
of acarbeing in the scene is never greater than the probability of
amotor vehiclebeing in the scene.

To estimate the full HLR model, we �rst estimated a separate
logistic model for each conditional probability. Each logistic
model predicts the binary presence or absence of a category given
a vector of voxel responses across a few previous time points,R.
Conditional probabilities were modeled by restricting the dataset
that was used for model estimation. For example, to estimate a
model for the conditional probability that acar is present given
that amotor vehicleis present, we used only the time points when
a motor vehiclewas present (this technique has a side advantage
of making model estimation much more e�cient, since most
of the conditional models are estimated using small subsets of
the full dataset). The logistic models have a separate weightfor
each of the included voxels, at each time point. To account for
hemodynamic lag, responses from multiple time points (4, 6, and
8 s after the stimulus being decoded) were also included.

To decode whether a category was present using the HLR
models, we multiplied the conditional probabilities together. For
example, to decode the probability thatcar was present at one
time point, we �rst extracted the relevant voxel responses, then
used the conditional logistic model to estimate the probability
that car was present given thatmotor vehiclewas present, and
then used another conditional logistic model to estimate the
probability thatmotor vehiclewas present. Finally, we multiplied
these probabilities together to �nd the joint probability that car
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FIGURE 1 | Hierarchical logistic regression graphical model .
A hierarchical logistic regression (HLR) model was used to capture
dependencies between decoded categories. A portion of the WordNet graph
is shown here. White nodes represent categories to be decoded. The shaded
node represents the observed voxel responses. The HLR modeldoes not
decode each category from the responses independently. Instead, it decodes
the conditional probability that a hyponym (subordinate orchild category) is
present, given that its hypernyms (superordinate or parentcategories) are
present. The decoded probabilities of hypernyms and hyponyms are then
multiplied together to compute the probability that the hyponym is present.

and motor vehiclewere present, given the voxel responses. It is
clear from this formulation that the probability thatmotor vehicle
is present can never exceed the joint probability thatmotor vehicle
andcarare present, thus respecting the hierarchical relationships
between these categories.

We applied the HLR modeling framework to BOLD fMRI
responses recorded from seven subjects (Figure 2). First, fMRI
responses were recorded while the subjects watched 2 h of natural
movies. The WordNet (Miller, 1995) semantic taxonomy was
used to label salient object and action categories in each one
second segment of the movies. Using the 2 h of model estimation
data, we then selected the 5000 voxels in each subject's cortex that
had the most reliable category-related responses (see Methods
for details). The category labels and BOLD responses for the
5000 selected voxels were then used to estimate a separate HLR
model for each subject. To test the HLR models we recorded
BOLD responses from the same subjects while they watched
an additional 9 min of novel natural movies that had not been

used to estimate the model. The model validation movies were
repeated ten times and the responses were averaged across repeats
to reduce noise. Finally, we used the HLR model for each
subject to decode which categories were present in the validation
movies.

MATERIALS AND METHODS

Subjects
Functional data were collected from seven human subjects.
All subjects had no neurological disorders and had normal
or corrected-to-normal vision. The experimental protocol was
approved by the Committee for the Protection of Human
Subjects at University of California, Berkeley. Written informed
consent was obtained from all subjects. The data for �ve of the
subjects used here were the same as those used in a previous
publication (Huth et al., 2012).

Experimental Design
The stimuli for this experiment consisted of 129 min of natural
movies drawn from movie trailers and other sources. These
stimuli are identical to those used in earlier experiments from our
laboratory (Nishimoto et al., 2011; Huth et al., 2012). WordNet
was used to label salient objects and actions in each 1s segment
of these movies (Huth et al., 2012). This resulted in 1364 unique
labels. After adding entailed hypernym labels the total number of
categories was 1705.

MRI Data Collection and Preprocessing
MRI data were collected on a 3T Siemens TIM Trio scanner at the
UC Berkeley Brain Imaging Center, using a 32-channel Siemens
volume coil. Functional scans were collected using a gradient
echo-EPI sequence with repetition time (TR)D 2.0045 s, echo
time (TE) D 31 ms, �ip angleD 70 degrees, voxel sizeD 2.24�
2.24� 4.1 mm, matrix sizeD 100� 100, and �eld of viewD 224�
224 mm. The entire cortex was sampled using 30–32 axial slices.
A custom-modi�ed bipolar water excitation radiofrequency (RF)
pulse was used to avoid signal from fat.

Separate model estimation (�t) and model validation (test)
datasets were collected from each subject in an interleaved
fashion during three scanning sessions. The stimuli for themodel
estimation dataset consisted of 120 min of movie trailers. These
stimuli are identical to the stimuli used inNishimoto et al.
(2011)and Huth et al. (2012), and are available for download
from CRCNS: https://crcns.org/data-sets/vc/vim-2/about-vim-
2. Functional data for the model estimation dataset were collected
in 12 separate 10-min scans. The stimuli for the model validation
dataset consisted of 9 min of movie trailers, repeated 10 times.
Functional data for the model validation dataset were collected
in 9 separate 10-min scans and then averaged. Note that the
estimation and validation stimuli were completely distinct;no
clips appeared in both sets. Throughout stimulus presentation for
both datasets, subjects �xated on a dot that was superimposed on
the movie and located at the center of the screen. The color ofthe
dot changed four times per second to maintain visibility.

Each run was motion corrected using the FMRIB Linear
Image Registration Tool (FLIRT) from FSL 4.2 (Jenkinson and
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FIGURE 2 | Schematic of experiment. The experiment consisted of two stages:model estimation and model validation . In the model estimation stage, seven
subjects were shown 2 h of natural movies while BOLD responses were recorded using fMRI. Salient object and action categories were labeled in each 1 s segment of
the movies. Direct decoding models were then estimated thatoptimally predicted the labels from linear combinations ofvoxel responses. In themodel validation
stage, the same seven subjects were shown 9 min of new naturalmovie stimuli that were not included in the estimation stimulus set. These movies were repeated ten
times and the responses were averaged to reduce noise. The previously estimated models were then used to decode which categories were present in the movies. To
assess model performance, the decoded category probabilities were compared to actual category labels in a separate validation set reserved for this purpose.
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Smith, 2001). A high quality template volume was then obtained
by averaging all volumes in the run. FLIRT was also used to
automatically align the template volume for each run to the
overall template, which was chosen to be the template for the
�rst functional movie run for each subject. These automatic
alignments were manually checked and adjusted for accuracy.
The cross-run transformation matrix was then concatenatedto
the motion-correction transformation matrices obtained using
MCFLIRT, and the concatenated transformation was used to
resample the original data directly into the overall templatespace.

For each voxel, low-frequency voxel response drift was
identi�ed using a median �lter with a 120-s window and this was
subtracted from the signal. The mean response of each voxel was
then subtracted and the remaining response was scaled to unit
variance.

Anatomical images were obtained using a T1 MP-RAGE pulse
sequence. These images were then segmented to obtain a 3D
representation of the cortical surface using Caret5 software (Van
Essen et al., 2001).

Model Estimation
The HLR model includes a separate conditional logistic
regression model for each category. Each conditional logistic
regression model converts a spatiotemporal pattern of voxel
activity to the binary presence (1) or absence (0) of one category,
for time points where all of that category's hypernyms are present.
While the cortex contains tens of thousands of voxels, many
voxels are very noisy or contain little information about the
stimuli. Thus, to reduce model complexity and reduce noise, only
5000 voxels in each subject were used as input to the HLR model.
(Models were tested in one subject using 1000, 5000, and 10000
voxels. The best performance was found with 5000 voxels.) To
�nd the best 5000 voxels for each subject, we �rst used regularized
linear regression to estimate an independent encoding model
for each voxel (encoding models predict the response of single
voxels as a weighted sum across binary category labels). This
modeling procedure was repeated 50 times, each time holding
out and predicting responses on a separate segment of the
model estimation dataset. Model prediction performance was
then averaged across the 50-folds and the best 5000 voxels
were selected. The model estimation dataset was used for this
procedure, the validation data were reserved for use elsewhere.

For each scene, the spatiotemporal input to the HLR model is
a length 15000 vector consisting of the BOLD responses for the
5000 selected voxels at three consecutive time points. Multiple
time points were included because BOLD responses are slow,
taking 5–15 s to rise and fall after a neural event (Boynton et al.,
1996). Including multiple time points in the model allows the
regression procedure to learn a linear �lter that will deconvolve
the slow BOLD response function from the stimulus time course.
Thus to predict the presence of a category at timet, the model
uses voxel responses at timestC2, tC3, andtC4 TRs. With a TR
of 2 s these delays correspond to 4, 6, and 8 s.

To build each conditional logistic regression model we used
only the subset of the model estimation data where all the
hypernyms of the selected category were present. For example,
to build a model for the categorysports carwe selected all the

time points wherecarwas present. The model was then estimated
using gradient descent with early stopping. First, the data were
broken into two sets: 90% of the data were used for gradient
descent and 10% were used to estimate the stopping point. At
each iteration the weights were updated based on the gradient
descent data, and then the model error was evaluated using the
early stopping data. If the error on the early stopping data did
not decrease for ten consecutive iterations, the gradient descent
procedure was terminated. Voxel weights were initialized to
zero and the bias term was set to produce the prior probability
of the category given its hypernym (the prior probability was
computed empirically across the training dataset). Each model
was estimated three times using separate early stopping datasets
and then the resulting weights were averaged.

We tested whether this gradient descent with early stopping
produced di�erent results from more standard L2-penalized
regression, but found very little di�erence. We implemented L2
regularized logistic regression using scikit-learn (Pedregosa et al.,
2011) with regularization coe�cients ranging from 10� 6 to 104.
For each of three bootstraps, we �t the model on 90% of the data
and evaluated the loss on 10% to choose the best regularization
coe�cient. We then took the median regularization coe�cient
found over the bootstraps and used it to re�t the model on
the entire training set. We compared results of this procedure
with those using the early stopping approach and found that, on
average, regression with early stopping performed slightly better.
Over all categories with AUC> 0.5 for either regression method,
early stopping AUCs were on average higher by 0.09, and 59.0%
of categories were better decoded by the early stopping model
than L2 regularization. These di�erences appear to be due to
early stopping doing much better on categories with few positive
examples.

To avoid over�tting the model output was smoothed toward
the original prior probability. We assumed a beta distributed
prior on model outputs, with the mean set to the conditional
prior probability for each category. We then �t a scaling
parameter! such that

P� (Si jSni ; R) D P.Si jSni ;R) C ! Pi;0
1C ! maximized the log likelihood

of 1 min of held out data (whereP(Si jSni ; R) is the output of the
logistic model for theith label given the other category labels and
responses, andPi;0 is the prior probability of seeing theith label
given that its hypernyms are present). This smoothed probability
was used in all subsequent analyses.

All individual category models were then combined to form
a HLR model that describes the full probability distribution over
all scene labels.

Model Estimation with Label Noise
One potential issue with the logistic regression approach
described above is that the manually assigned category labels in
the model estimation dataset might be inaccurate or noisy. To
account for this possibility we re-estimated logistic regression
models for one subject using the method from (Bootkrajang and
Kabán, 2012), which iteratively estimates a 2� 2 label �ipping
probability matrix for each category, where the �rst row is the
probability of getting a label of 0 or 1 given that the true label is 0
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and the second row is the probability of getting a 0 or 1 given that
the true label is 1. We re-estimated each logistic regression model
twice: �rst initializing all the model weights to zero, and second
initializing the model weights to the values found using our
earlier logistic regression approach. In both cases we initialized
the label error probability (i.e., the o�-diagonal values in the label
�ipping matrix) to be 0.1. For both conditions, the �ipping matrix
rapidly converged to the identity matrix in nearly every category.
The maximum estimated label error probability was 0.0086 (i.e.,
less than 1%). This suggests that the label �ipping matrices for
this experiment are virtually indistinguishable from the identity
matrix. This is likely due to the fact that our stimuli were hand-
labeled by a single individual rather than using a crowd-sourcing
approach such as Amazon's Mechanical Turk.

Model Evaluation
Receiver Operating Characteristic (ROC) Analysis
For each time point in the validation dataset we predicted the
probability that each category was present in the stimulus using
the HLR. Then an ROC analysis was used to assess model
decoding performance for each category. To perform the ROC
analysis we gradually increased a detection threshold fromzero
to one. For each threshold we computed the number of false
positive detections (points where the predicted time course is
higher than the threshold but the category is not present) andtrue
positive detections (where the predicted time course is higher
than the threshold and the category is actually present in the
stimulus). Then we plotted the true positive rate (TPR) against
the false positive rate (FPR) across all thresholds, producingthe
ROC curve.

A common statistic used to gauge detection performance is
the area under the ROC curve (AUC). An AUC value of 1.0
represents perfect decoding, where the decoded probability for
any time point where the category is actually present is higher
than the decoded probability for every time point where the
category is absent. We determined chance level of the AUC
by shu�ing the actual binary labels for each category across
time. Blocks of four TRs were shu�ed 1000 times to produce
new time courses with the same prior probability and a similar
autocorrelation structure to the original data (we tested other
block sizes but found no di�erence in the results). The AUC
was then computed for each of 1000 shu�ed time courses, and
the null distribution of AUCs was �t with a beta distribution
centered at 0.5. Finally, we computed the probability of obtaining
the actual AUC under this distribution. The actual AUC was
declared signi�cant if its probability under this null distribution
was below the signi�cance threshold. Signi�cance thresholds
were determined by applying the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995) to limit the false discovery rate,
q(FDR), across multiple comparisons to 0.01.

Model Likelihoods
The ROC analysis tests how well each category is decoded across
all time. Yet it is also important to test how well all the categories
are decoded within each time point. To test this we calculatedthe
likelihood of the actual category labels at each time point, given
the decoded category probabilities. This likelihood was computed

as the product of the probabilities of obtaining the actual binary
label for each category under the model. For the null model we
used the prior probability according to the model estimation
dataset, which was constant over time. We then quanti�ed model
performance as the relative log likelihood ratio between the HLR
model and the null model. To estimate chance level performance
we shu�ed the model output for each category across time
100,000 times, recomputing the log likelihood ratio on each
shu�e. The relative log likelihood was declared signi�cant if
the probability under the shu�ed distribution was below the
signi�cance threshold (p < 0.01).

RESULTS

Decoding Performance for Individual
Categories
Figure 3 shows HLR model decoding performance in one
subject for a few di�erent categories:talk, animal, vehicle,and
thing (similar plots for the other six subjects are shown in
Supplementary Figures 1–7). Panels on the left side of the
�gure show the decoded category time course, across the model
validation dataset. Shaded regions indicate periods when the
category was actually present. Panels on the right side of the
�gure show the receiver operating characteristic (ROC) curvefor
the corresponding category decoder. The shaded region under
the ROC curves shows the density of the null distribution of ROC
curves, which was determined by shu�ing. All the AUCs shown
in this �gure are signi�cantly greater than expected by chance
(q(FDR)< 0.01).

The �rst row of Figure 3 shows the decoded time course
for the verbtalk. The decoded probabilities are very high when
talk occurs in the movie and they are relatively low at other
times. There are no false positive peaks in the decoded time
course. However, the decoded time course is not temporally
precise: it takes a few seconds to rise and fall. For example,
at 2.7 min into the movietalk appears for a single time point,
but the decoded probability begins to rise several time points
earlier and then takes several time points to fall back to baseline
after the category disappears. This temporal imprecision appears
even though the HLR model includes responses from multiple
time lags, which should partially compensate for the sluggish
hemodynamic response. This might be because the HLR model
decodes the categories at each time point independently, and
does not consider the categories decoded for other time points.
Nevertheless, the area under the ROC curve (AUC) is 0.918,
demonstrating that the decoder is extremely accurate. This
suggests that the cortical representation oftalk is su�ciently
robust to be decoded reliably using fMRI.

The second row ofFigure 3 shows the decoded time course
for the categoryanimal. The AUC for animal is 0.911, again
indicating that the decoder is extremely accurate. As with
talk, this suggests that the cortical representation ofanimal is
su�ciently robust to be decoded reliably using fMRI.

The third row of Figure 3 shows the decoded time course
for the categoryvehicle(This is a general category that includes
several more speci�c categories such ascar,motorcycle, andboat).
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FIGURE 3 | Decoded time courses and decoding performance from one subject for four individual categories. Results for four out of the 479 categories
decoded in this study. (Left ) Each row gives the decoded probability that a speci�c category of object or action was present in the movie over time. Bluelines show
the decoded probability and gray regions show time points when the category was actually present in the movie. Decoded probabilities for the verbtalk and the noun
animalare high when those categories are present, and lower at other times. However, the probabilities are not temporally precise. For example, at 2.7 min into the
movie talk appears for a single time point, but the decoded probabilitytakes several time points to rise and fall. Decoded probabilities for the nounvehicleand the
noun thing (speci�cally thing.n.12, which includes categories as diverse asbody of water and body part) are less accurate thantalk or animal. However, the decoding
model correctly assigns low con�dence to its predictions, asevidenced by the fact that the decoded probability forthing hovers around the prior value of 0.32. (Right )
Receiver operating characteristic (ROC) analysis summarizing overall decoding accuracy for each of the four categories. The ROC plots the true positive rate (TPR) as
a function of the false positive rate (FPR) of the decoder. Performance of the decoder is shown in blue. Chance performance was determined by shuf�ing the stimulus
timecourse and recomputing the ROC curve (see Methods). Thedistribution of curves across 1000 shuf�es is shown on the same plot in gray. The area under the
ROC curve (AUC) is shown within each panel and signi�cant values (q(FDR)< 0.01) are marked with an asterisk. The ROC curves indicate that both talk and animal
are decoded accurately, butvehicleand thing are not decoded particularly well. Similar plots for the other six subjects are shown in Supplementary Figures 1–7.

The decoded time course is very high at 6.1 min, whenvehicle
is actually present in the stimulus. However, the decoded time
course was low during several other periods whenvehiclewas
present. At other times, such as 0.5 min, the decoded time course
is high but novehicleis present. In this case the AUC is 0.758,
indicating that the overall accuracy of the decoder is fair.This
suggests that the cortical representation ofvehicleis not as reliable
or distinctive as the representations oftalk or animal.

The fourth row ofFigure 3 shows the decoded time course
for the categorything. Thing(speci�callything.n.12in WordNet)
is a high-level category that includes categories such asbody
part andbody of water. The decoded time course is consistently
intermediate, and there are few times where the decoded
probability was very high or very low. Time points where a

thing was actually present in the stimulus have only marginally
higher decoded probabilities than time points wherething was
not present. The AUC of 0.694 is statistically signi�cant, but it is
much lower than the AUC obtained for other categories shown
here. This suggests that the cortical representation ofthing is
not distinctive as is the representations of other, more speci�c
categories. We believe that this is becausething is an arti�cial
category invented by WordNet that is not strongly represented
in the brain.

Decoding Performance for All Categories
The results inFigure 3 showed that the decoder is not equally
successful for all categories. To explore this issue further, we
computed the decoding performance (AUC) for all categories
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FIGURE 4 | Graphical visualization of decoding accuracy. The plot is arranged according to the graphical structure ofWordNet. Circles and squares denote the
479 categories that appeared in the movies used for model validation. Circles indicate objects (nouns) and squares indicate actions (verbs). Decoding performance
was aggregated across all subjects by concatenating the decoded probability time courses. The size of each marker denotes the area under the ROC curve (AUC) for
that category, ranging from 0.5 to 1.0. The marker colors denote the p-value for that category's AUC; deeper blue re�ects largerp-values. Categories where decoding
accuracy is signi�cant are displayed as �lled circles (q(FDR)< 0.01). The AUC is high for some general categories, such asperson, mammal, and artifact. It is low for
others, such asthing, matter, instrumentality, and abstraction. This suggests that some general categories are well represented in the brain at a scale that can be
measured using fMRI, while others are not. The AUC is usually low for speci�c categories that are more infrequent. This doesn't necessarily imply that infrequent
categories are represented poorly in the brain; it may merely re�ect insuf�cient data. The AUC is also low for background categories, such asplant, location, and
atmospheric phenomenon. This may occur because subjects do not usually attend to these categories well unless instructed to do so explicitly. Similar plots for each
subject separately are shown in Supplementary Figures 1–7.
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that appeared in at least 3 time points in the validation
dataset. InFigure 4 we show these AUCs in a graph that is
organized according to the structure of the WordNet semantic
taxonomy (similar plots for each subject separately are shown
in Supplementary Figures 1–7; the 30 best-decoded categories
across all subjects are listed in Supplementary Table 1). Here
the color of each node re�ects the AUC (integrated across all
the subjects), and the saturation re�ects con�dence in the AUC
estimate.

Many general categories, such asperson, mammal,
communicate, andstructurewere decoded accurately, suggesting
that these categories are represented by speci�c, consistent
patterns of activity in the brain. In contrast, other general
categories, such asthing and abstraction, were decoded poorly,
even though we can accurately decode the hyponyms (or
subordinate categories) of these poorly decoded general
categories. For example,thing is poorly decoded, but its
hyponyms body of waterand body part are both decoded
accurately. This suggests thatbody part and body of water
are represented very di�erently, so the linear model cannot
decode both categories simultaneously. Among actions (shown
as square markers) we found that communication verbs, travel
verbs, and intransitive movements (e.g.,jump, turn) were usually
decoded signi�cantly and accurately, while consumption verbs
and transitive movements (e.g.,drag, pour) were usually decoded
poorly.

Conditional Decoding Performance
The HLR approach assumes that cortical responses follow the
WordNet taxonomy, but this assumption is likely false in some
cases. Therefore we performed an analysis that shows which
hypernymy relationships in WordNet were not re�ected in brain
activity. Under the HLR approach we used WordNet to construct
conditional models that decode the presence of a given category
including all of its hyponyms. For example, the conditional
model for car must distinguish between any car (e.g.,station
wagon, sports car, etc.) and any othermotor vehicle. These models
implicitly assume that all the hyponyms of any given category
elicit similar responses in cortex (Figure 5). If this assumption
is true, then overall decoding performance will be good, but it
may be di�cult to distinguish between the hyponym categories.
If this assumption is false, then overall decoding performance will
be poor, but it will be easy to distinguish between hyponyms.

We used this logic to construct a test for each hypernymy
relationship in the subset of WordNet used in this study. For
each category, we computed the conditional AUC (cAUC) using
only the time points in the validation dataset when all the
hypernyms of that category were present. Thus the cAUC shows
how well a category can be distinguished from its siblings. We
then compared the cAUC to the overall AUC for each category. If
the cAUC was signi�cantly higher than the overall AUC, then we
concluded that the assumed relationship between this category
and its hypernym is not re�ected in brain activity.

The results of this analysis are shown inFigure 6. Here the
cAUC for each category is plotted on the same WordNet graph
used inFigure 4. The size and color of each node re�ects the
cAUC of the corresponding category. For categories where the

FIGURE 5 | Conditional versus full AUC. The HLR assumes that the
structure of WordNet is re�ected in the brain. Yet this may notbe the case. If a
particular grouping of categories (shown as blue nodes inA) is strongly
re�ected in the brain, then we would expect that the group willbe highly
separable from all other categories. This situation is shown graphically in
(B), where voxel responses to several categories are plotted ina hypothetical
2-dimensional response space. Categories within a group are shown in blue
and other categories are gray. The voxel response to the category we are
trying to decode is shown as a circle. Here the blue categories are easily
linearly separated from other categories, leading to a hightotal AUC for the
selected category. A different situation is shown in(C), where the grouped
categories do not elicit very similar responses. Here the selected category is

(Continued)
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FIGURE 5 | Continued
easier to distinguish from its siblings than from other categories, leading to a
high cAUC and lower total AUC. This suggests that for WordNet-based
category groupings that are not re�ected in the brain, the cAUC will be
signi�cantly higher than the total AUC.

cAUC is signi�cantly higher than the overall AUC, the edge
linking that category to its hypernym is colored red (all signi�cant
relationships are listed in Supplementary Table 2). In total, we
found that 17 of the relationships given by WordNet were
signi�cantly inconsistent with brain responses. Several ofthe
signi�cantly inconsistent relationships highlight categories that
are technically related, but which are very di�erent from their
siblings. For example,plant is the only non-animate branch of
organism,horseis the only equine ridden by humans, andpenguin
is the only �ightlessseabird. Other signi�cantly inconsistent
relationships appear between very high-level categories, likely
re�ecting di�cult choices made in the design of WordNet. For
example, the relationships betweenthing (speci�callything.n.12)
and its hyponymsbody partandbody of waterseem arti�cial. In
sum, these results show several category relationships thatshould
be reconsidered if WordNet is to be used to further model brain
responses.

Decoding Performance for Individual Time
Points
The HLR model recovers information about the presence of
individual categories in the stimulus, but in natural movies many
di�erent categories appear at each point in time. To test how
well the HLR model decodes all of the categories present at each
time point, we computed the probability of the actual categories
present in the stimuli,S(t), given the model estimates,� . t/ D
OP.S.t/ j R). In order to compare to the level of performance
that would be expected by chance, we normalized this value by
the prior probability of the actual categories,P0(S). Here we
approximatedP0(Si) by setting it equal to the proportion of the
time that the categorySi was present in the movies used for
model parameter estimation. Thus, the likelihood of the decoded
category relative to the prior for each time point is given by:

P(S(t)j" . t/ )
P0(S)

Figure 7 shows the relative log likelihood across time, averaged
across subjects (similar plots showing data for each subject
separately are shown in Supplementary Figures 1–7). Log
likelihood ratios greater than zero indicate periods when HLR
model estimates are relatively more likely than the prior, and
log ratios less than zero indicate periods when the model is
relatively less likely than the prior. This �gure shows that some
periods in the movie are decoded consistently better than others.
Examination of the stimuli that appeared during the peaks and
troughs in decoding performance shows that decoding is most
accurate for underwater scenes and for scenes that contain a
single person. These scenes contain only a few categories, all of
which are well-modeled by the decoder. We observe a weak trend

toward lower relative log ratios when the number of categories in
a scene is greater (see Supplementary Figure 8), and decoding is
relatively poor for scenes that contain unusual categories (such
as close-up scene of wine being poured into a wineglass) and for
time points that contain transitions between scenes.

Comparison of Original Movies with
Decoded Categories
To provide an intuitive and accessible demonstration of the
performance of the HLR decoder, we constructed a composite
video that shows the stimulus movie on the left, and the
categories with the highest decoded probability on the right
(see Supplementary Video 1). The size of each label corresponds
to the predicted probability that the category is present. Note
that the stimuli shown here are from the model validation set,
and were not used to train the decoder. This demonstration
shows that the decoder successfully recovers information about
many categories regardless of the speci�c content of the
movie.

Mapping Decoding Model Weights across
the Cortex
Since the HLR decoder seems able to recover many object and
action categories from BOLD responses, one might naturally ask
which voxels are used to decode each category. However, note
that decoding results must be interpreted with caution; asking
which voxels contribute to decoding is not equivalent to asking
which voxels represent information about a category (Haufe et al.,
2014; Weichwald et al., 2015). Voxels that have small (or zero)
decoding weights for a category may still represent information
about that category, but if the voxel also represents information
about other categories then it might not be particularly useful for
decoding. Conversely, voxels that have large decoding weights
may not represent information about a category, but might
instead be correlated (or anti-correlated) with noise in voxels
that do represent that category. These interpretational issues
are much less serious for encoding models (Huth et al., 2012),
which predict responses from stimuli rather than predicting
stimuli from responses. Voxels that have small encoding model
weights for a category are likely not involved in representing
that category. Voxels that have large encoding model weights
either respond directly to the category or to some aspect of the
stimulus that is correlated with the category. For these reasons,
we direct readers who are interested in how these categoriesare
represented across the cortex to our encoding model study that
used the same dataset as the one analyzed here (Huth et al., 2012).

To illustrate the di�culty of interpreting decoding model
weights, we plotted both decoding and encoding weights for
one category,person.n.01, on cortical �at maps for one subject
(Figure 8, For illustrative purposes this decoding model was
�t using the entire dataset rather than only the time points
containing the hypernyms ofperson). Earlier studies have shown
that several brain areas respond selectively to human faces and
bodies, including the fusiform and occipital face areas [FFA
Kanwisher et al., 1997& OFA Kanwisher et al., 1997; Halgren
et al., 1999] and the extrastriate body area (EBADowning et al.,
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FIGURE 6 | Graphical visualization of decoding accuracy afte r conditioning on parent categories. Decoding performance for each of the 479 categories,
conditioned on the presence of their hypernym in the scene, concatenated across subjects. The �gure is arranged identically to Figure 4 . The conditional AUC (cAUC)
was computed only on time points where the hypernyms of a category are present, which forces the model to discriminate amongst sibling categories. If the cAUC for
a category is greater than the full AUC, it means that the category is easier to distinguish from its siblings than from other categories. The signi�cance of this difference
was evaluated for each edge in the WordNet graph. If a categoryis signi�cantly less similar to its siblings than would be expected by chance, the edge is colored red.
Thus WordNet links between categories that are unrelated inthe brain appear red. Edges betweenthing and its hyponymsbody of water and body part appear red
because these categories are not represented similarly in the brain. Also, the edge betweenorganism and plant appears red, likely becauseplant is the only
non-animate hyponym oforganism. Categories for which the conditional entropy is too low to reliably estimate cAUC are colored gray.
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FIGURE 7 | Overall decoding performance at each time point acros s all object and action categories. Here results at each time point have been averaged
across all �ve subjects. Decoding accuracy is expressed as the log likelihood of the actual category labels given the model, relative to the prior likelihood that each
category is present. Values at zero indicate that the model performs as well as would be expected by merely guessing basedon prior probabilities. Shaded regions
indicate performance signi�cantly better than chance (p < 0.01 uncorrected, permutation test). Two examples of well-decoded time points are shown at the top. One
is a man walking, the other is an underwater scene showing a school of �sh. These are simple and stereotypical scenes that can be decoded accurately. Two examples
of poorly-decoded time points are shown at the bottom. One ismid-fade transition between scenes of a horse jumping and a woman drinking, the other is a closeup
of a deer's eye. The transition scene cannot be decoded accurately because the temporal precision of the decoder is poor.The deer eye is an atypical scene that is
found rarely in the stimuli used to estimate the voxel-wise models. Similar plots showing data for each subject separately are shown in Supplementary Figures 1–7.

2001). Therefore one might naïvely expect that voxels in all
of those areas would be assigned large positive weights in the
decoding model forperson. However, the decoding model only
has high weights in the face areas (FFA and OFA), but not the
body area (EBA). Thus, interpreting the decoding model weights
directly would lead to the conclusion that EBA does not represent
information about humans. In contrast, the encoding model has
high weights in EBA as well as the face areas, demonstrating that
EBA does, as expected, respond to the presence of humans. So
why was EBA ignored by the decoding model? One possibility
is suggested by our earlier encoding model study, which showed
that EBA responds to both animals and humans, but that FFA
and OFA are both relatively more selective for human faces
(Huth et al., 2012). Based on these encoding model results,
the conclusion from the decoding model—that EBA does not
represent information about humans—appears false. Instead,
we should conclude that EBA represents information about
humans in addition to other categories. This example illustrates
that directly interpreting decoding weights can easily leadto

erroneous conclusions, and should thus be avoided whenever
possible. Instead, questions about cortical representation should
be answered using encoding approaches.

DISCUSSION

In this study we showed that it is possible to accurately decode
the presence or absence of many object and action categories
in natural movies from BOLD signals measured using fMRI.
These include general categories, such asanimal and structure,
speci�c categories, such ascanineandwall, and actions, such as
talk and run. However, decoding accuracy was better for some
categories than it was for others. In particular, we found that
decoding accuracy was generally better for scenes that contained
relatively fewer categories than for scenes containing relatively
more categories. This suggests that the amount of category-
related information available in BOLD signals at each timepoint
is limited.
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FIGURE 8 | Flattened cortical maps showing example decoding an d encoding model weights for one category. We plotted both decoding and encoding
model weights for one category,person.n.01, in one subject. For the purpose of this visualization we constructed a direct logistic decoding model for this category
(i.e., we did not condition on its hypernyms). We averaged the decoding weights across the three delays within each of the5000 voxels, and then rescaled the
resulting average weights to have a standard deviation of 1.0. Similarly, we averaged the encoding weights for the same 5000 voxels across the three delays and then
rescaled the results. For the decoding model, we see large positive weights in the occipital face area (OFA) and fusiformface area (FFA), suggesting that activity in
those regions predicts the presence of a person in a visual scene. For the encoding model, we also see positive weights in OFA and FFA, but some of the most
positive weights appear in the extrastriate body area (EBA). This suggests that the presence of a person in a visual scenepredicts EBA responses. However, the lack
of large EBA weights in the decoding model suggests that EBA responses are not speci�c to seeing a person. This illustratesthe inherent dif�culty of interpreting
weights from a decoding model.

Our decoder used a HLR model based on the graphical
structure of WordNet, a semantic taxonomy that was manually
constructed by a team of linguists (Miller, 1995). This hierarchical
approach has two important features that make it attractive
for decoding categories from natural stimuli. First, it provides

a means to decode information at many di�erent levels of
detail simultaneously. This is vital for decoding natural stimuli,
where it is unclear what level of detail should be used to
describe any particular object or action. For example, the same
object could be correctly labeled as avehicle, car, sports car, or
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Ford Mustang. By decoding all levels of detail simultaneously
the HLR model sidesteps the question of which level is most
appropriate: a scene has some probability of containing avehicle,
some probability of containing acar, and so on. This allows
the HLR model to decode relatively more general categories
when speci�c categories occur infrequently or when they are
di�cult to distinguish using the brain data. For example, the
HLR could show that it is di�cult to decode the speci�c
categoryFord Mustangbut easy to decode the general category
vehicle. Using multiple levels of detail also allows the HLR
to generalize to new categories: even ifFord Mustangdid
not appear in the model estimation dataset, the HLR might
decode the presence ofcar based on earlier examples of that
category.

The second important feature of the HLR model is that
it uses the relationships between categories to rationally
constrain the decoding results. If these constrains were
not included, simultaneously decoding hierarchically related
categories could easily lead to nonsensical results. For example,
a naïve simultaneous decoder might �nd that the probability
of a particular scene containing acar is higher than the
probability of that scene containing avehicle. This would be
impossible, since everycar is also avehicle. The HLR avoids
this issue by constraining the decoded probability of any
category to be at most equal to the decoded probability of
that category's hypernyms in WordNet. This approach builds
on an idea known as “structured output” or “hierarchical
learning” (DeCoro et al., 2007; Silla and Freitas, 2011), a
�eld of machine learning concerned with problems where the
output is known to have some speci�c statistical structure.
In the decoding problem that we are addressing here, the
structure of the output is de�ned by the WordNet category
hierarchy and the knowledge that a category can never be
present unless its hypernyms are present. This information is
incorporated into the model by using what is known as a
“local” or “siblings” policy for selecting the negative training
examples for each category (Wiener et al., 1995; Silla and
Freitas, 2011). This nomenclature comes from the fact that
the negative examples for each category are chosen to be the
time points where the category's siblings are present (and thus
the category's parent is present), but where the category itself
is not. This approach is also able to make model estimation
more computationally e�cient without decreasing performance
because it only uses relevant training examples (Fagni and
Sebastiani, 2007).

One potential issue with the HLR approach is its implicit
assumption that all the hyponyms of a category elicit similar
brain responses. This could lead to problems because the category
relationships come from WordNet, which is a hand-constructed
semantic taxonomy and thus is not guaranteed to re�ect brain
activity. To address this issue, we tested each of the relationships
speci�ed in the subset of WordNet spanned by our stimuli.
This was done by examining how easily each category could be
distinguished from its siblings under the same hypernym.

We found that two speci�c types of WordNet relationships
were not re�ected in cortical representations. The �rst are
relationships that are technically correct, but where the speci�c

category fails to share many features with the general category.
For example, the relationship betweenplant and organism
was not re�ected in brain activity, likely becauseplant is
the only inanimate hyponym oforganism. The second type
are relationships that seem abstrusely academic and may
be idiosyncratic to WordNet. For example, the relationships
betweenthing.n.12and its hyponymsbody part and body of
water were not re�ected in brain activity, likely due to the fact
that body part and body of waterare not similar categories
by most metrics. It is possible that modifying the WordNet
hierarchy by removing or changing these poorly represented
relationships would actually improve decoding performance.
Modifying WordNet based on brain data might also prove
useful for understanding how categories are represented in
the brain. Future studies might even replace WordNet with a
hierarchy learned entirely from brain data. E�orts to construct
category hierarchies directly from brain data have already
yielded plausible results for a few categories (Kriegeskorte et al.,
2008).

One alternative to the HLR approach would be to decode
only the “basic level” categories (Rosch et al., 1976). This
would simplify some aspects of the modeling, since it would
obviate the need to account for relationships between categories.
Furthermore, basic level categories might be better represented
in cortex than superordinate or subordinate categories (Iordan
et al., 2015). However, a basic-level decoder would not be as
powerful as the HLR decoder. First, the basic level category
of a particular object is highly dependent on context (Rosch,
1978). For example, observers might agree that the basic level
category for a speci�c object in a city scene iscar, but the same
object seen in a car dealership might be calledsports car. It is
not clear that estimating separate decoding models forcar and
sports carwould make sense in this situation. Second, it would
be impossible for a basic level category decoder to generalizeto
new categories. For example, suppose that several scenes in the
validation dataset containedtrains,but that trains did not appar
in the estimation dataset. While neither the HLR model nor a
basic level decoder would be able to directly decode the presence
of train, the HLR model might be able to decode the presence
of vehiclebased on other examples such as cars, boats, and
airplanes.

Another alternative to the HLR model would be to represent
categories not as binary variables, but as vectors of features, topic
probabilities (Stansbury et al., 2013), or co-occurrence values
from large text corpora (Mitchell et al., 2008; Turney and Pantel,
2010; Wehbe et al., 2014; Huth et al., 2016). This type of model
would have several advantages over binary decoders. First,a
feature-based decoder could improve generalization becauseit
would only require that all the features were present in the
estimation stimulus, and not necessarily that every individual
category was present. Second, the HLR model assumes that
each category is independent of every other category given
its hypernyms. This assumption is clearly false in many cases
(Blei et al., 2003; Stansbury et al., 2013). For example, although
car and road are distant relatives in the WordNet taxonomy,
they are highly correlated in natural stimuli. A decoder that
takes these statistical relationships into account could combine
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information from categories that are not directly related in the
WordNet taxonomy, which would potentially improve decoding
performance.

In recent years, the �eld of brain reading has generated
considerable interest from scientists and the public alike.
Every improvement in brain measurement technology brings
us closer to the goal of a general device for reading out
the state of a person's brain. To that end, the HLR model
developed here has improved our ability to simultaneously
decode many variables while respecting some of the statistical
dependencies between them. Yet there are still many issues in
brain reading that remain unsolved. We believe that the most
important theoretical limitation is that all current methods (the
HLR included) assume independence between variables that
are actually not independent. One example is the assumption
that each category within a scene occurs independently, as
discussed above. Another example is the assumption that stimuli
are independent from timepoint to timepoint. Relaxing these
assumptions should improve the performance of future brain
decoders. The future ideal decoder should capture as many of
these dependencies among stimulus variables as possible, thus
minimizing the amount of information needed to decode the
stimuli.
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