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One crucial test for any quantitative model of the brain is tehow that the model can
be used to accurately decode information from evoked brain etivity. Several recent
neuroimaging studies have decoded the structure or semarticontent of static visual
images from human brain activity. Here we present a decodinglgorithm that makes it
possible to decode detailed information about the object ad action categories presentin
natural movies from human brain activity signals measuredytfunctional MRI. Decoding
is accomplished using a hierarchical logistic regressiorHLR) model that is based on
labels that were manually assigned from the WordNet semaititaxonomy. This model
makes it possible to simultaneously decode information abat both speci ¢ and general
categories, while respecting the relationships between #m. Our results show that
we can decode the presence of many object and action categods from averaged
blood-oxygen level-dependent (BOLD) responses with a higbegree of accuracy (area
under the ROC curve> 0.9). Furthermore, we used this framework to test whether
semantic relationships de ned in the WordNet taxonomy areepresented the same way
in the human brain. This analysis showed that hierarchicatlationships between general
categories and atypical examples, such asorganism and plant, did not seem to be
re ected in representations measured by BOLD fMRI.

Keywords: fMRI, decoding, natural images, WordNet, structur ed output

INTRODUCTION

In the past decade considerable interest has developed irdotecstimuli or mental states from
brain activity measured using functional magnetic resaemaging (fMRI). Early results in this
eld (Kay et al., 2008; Mitchell et al., 2008; Naselaris et al.,, 208B8imoto et al., 20)lhave created
substantial excitement over the prospect of futuristic namasive brain-computer interfaces that
could perform “brain reading.” These studies have shown shdiistantially more information can
be recovered from BOLD fMRI than many had previously believ&d,(et al., 2008 Furthermore,
one recent study from our laboratory showed that it is possibldecode the appearance of rapidly
changing natural movies using fMRN({shimoto et al., 201)] challenging the received wisdom that
fMRI is only suitable for studying slow phenomena. Here we extaur previous work by decoding
which categories of objects and actions are present in natuwogies.

Brain decoding can be viewed as the problem of nding the stisyS that is most likely to
have evoked the observed BOLD responResnder the probability distributiorP(S | R) To date,
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two general approaches have been been used to solve tbis to build a separate model for each category. However, this
problem: Bayesian decoding and direct decoding. In Bayesiaapproach implicitly assumes that each category is independent
decoding one constructs an explicit model R | S)in order  from all the others. This assumption is clearly false when the
to predict the response based on the stimulus. Then, Bayes' rutategories are related hierarchically and it can lead tspasical

is used to invert the conditional probability®(S | R)D P(R results, such as decoding that a scene contaicardut not a

| S) P(S) / P(R)This approach has been used to decode theehicle

visual appearance and semantic category of static naturgeéma  We solved this problem by combining multiple logistic
(Naselaris et al., 20p%he visual appearance of natural moviesregression models together hierarchically. The HLR model
(Nishimoto et al., 201)1 and the semantic category of isolateddecodes the conditional probability that each category is
visual objects or words\{itchell et al., 2008 However, Bayesian present, given that its hypernyms (its superordinate or parent
decoding requires the construction of a prior distributioney  categories in the hierarchy) are present. These conditional
stimuli, P(S) and this is impractical when the decoding space iprobability relationships can be represented as a graphicakod
large (e.g., when decoding natural scenes or movies). IresonfFigure 1). The graphical model shows, for example, that the
cases, this issue can be solved by using a large empirical prjomt probability that a scene contains the categoriastor
(Naselaris et al., 2009; Nishimoto et al., 20However, we have vehiclecar, andstation wagorfgiven a vector of brain responses,
no way to estimate the empirical prior for categories appearing) can be factorized into a product of conditional probabiliie

in natural movies. This makes it di cult to apply the Bayesian

decoding framework to this problem. P(motor vehiclecar, station wagoiiR)
The other popular approach to this problem is direct D P(motor vehiclgR)  P(carjmotor vehiclg R)
decoding. In this approach, one constructs an explicit model P(station wagoricar, R)

of P(S | R)that directly predicts the stimulus based on the
response. Direct decoding has been used to decode which of tWhius, the joint probability that a scene contains the catesgor
visual categories is being viewedakby et al., 2001; Carlson motor vehiclecar, and station wagonis equal to the product
et al., 2003; Cox and Savoy, 2J)J0mhich of two categories a of three conditional probabilities (note that this example is
subject is dreaming aboutprikawa et al., 2013 and which  simpli ed; in our actual datamotor vehicleis not a top-
objects are present in static natural visual scefés(sbury etal., level category). Further, the marginal probability that the
2013. However, for several reasons direct decoding is usuallyategory station wagonis present in the scene is identical
not optimal for decoding objects and actions in natural seeneto this joint probability. This model does not treat each
from brain activity. First, direct decoding implicitly asses that category independently. Instead, it assumes that each agtego
each decoded feature is independent, but objects and adtionsis conditionally independent of the others, given its hyperrsym
natural scenes tend to be correlated with one another (aiifio  This structure enforces the sensible constraint that the plodita
recent work from our lab has shown that it is possible to workof acarbeing in the scene is never greater than the probability of
around this issue by transforming the stimuli into a featureamotor vehiclédeing in the scene.
space where the independence assumption is v@alihsbury To estimate the full HLR model, we rst estimated a separate
et al., 2013 Second, each object or action has many potentidbgistic model for each conditional probability. Each |digis
category labels that are related in a nested, hierarchicadtare. model predicts the binary presence or absence of a categaw giv
For example, al993 Mercury Sableould also be called a a vector of voxel responses across a few previous time p&ints,
station wagona car, a motor vehicleetc. These labels are not Conditional probabilities were modeled by restricting thetakset
independent and so should not be decoded independently. Ortbat was used for model estimation. For example, to estimate a
solution to this issue would be to decode only one label in thenodel for the conditional probability that earis present given
hierarchy, such as the basic-level categétysch et al., 196 that amotor vehiclés present, we used only the time points when
which in this example would likely bear. However, a basic amotor vehiclevas present (this technique has a side advantage
level category decoder would ignore fMRI signals related tof making model estimation much more e cient, since most
subordinate categories (such station wagoror 1993 Mercury of the conditional models are estimated using small subsets of
Sablg, which might carry additional information about the visua the full dataset). The logistic models have a separate wéight
scene. Furthermore, obtaining basic-level categorydaelld each of the included voxels, at each time point. To account for
require extensive manual labeling from multiple observe.  hemodynamic lag, responses from multiple time points (4, 6, and
these reasons, here we elected to use a di erent approach itmwhi8 s after the stimulus being decoded) were also included.
we decoded categories at many di erent levels within a higrar To decode whether a category was present using the HLR
simultaneously. models, we multiplied the conditional probabilities togethigor

Our direct decoding approach, hierarchical logistic regaess example, to decode the probability thear was present at one
(HLR), decodes which object and action categories are presetitne point, we rst extracted the relevant voxel responseenth
in natural movies while capturing hierarchical dependenciesised the conditional logistic model to estimate the prokigbil
among them. Logistic regression is a natural choice for rfinde that car was present given thahotor vehiclevas present, and
a system with gaussian inputs (such as BOLD responses) atiten used another conditional logistic model to estimate th
binary outputs (such as the presence or absence of a speciprobability thatmotor vehiclevas present. Finally, we multiplied
category). The most basic logistic regression approach wouttiese probabilities together to nd the joint probability thaar
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Was there a
motor vehicle
in the scene?

Voxel
responses

Given there was
a motor vehicle,
was there a car in
the scene?

... a station wagon? ... a sports car?

FIGURE 1 | Hierarchical logistic regression graphical model

A hierarchical logistic regression (HLR) model was used taapture
dependencies between decoded categories. A portion of the WrdNet graph
is shown here. White nodes represent categories to be decodé. The shaded
node represents the observed voxel responses. The HLR modeloes not
decode each category from the responses independently. Insad, it decodes
the conditional probability that a hyponym (subordinate ochild category) is
present, given that its hypernyms (superordinate or parerdategories) are
present. The decoded probabilities of hypernyms and hyponys are then
multiplied together to compute the probability that the hypnym is present.

used to estimate the model. The model validation movies were
repeated ten times and the responses were averaged acrogs repea
to reduce noise. Finally, we used the HLR model for each
subject to decode which categories were present in the valida
movies.

MATERIALS AND METHODS

Subjects

Functional data were collected from seven human subjects.
All subjects had no neurological disorders and had normal
or corrected-to-normal vision. The experimental protocolsva
approved by the Committee for the Protection of Human
Subjects at University of California, Berkeley. Writtenarmhed
consent was obtained from all subjects. The data for ve ef th
subjects used here were the same as those used in a previous
publication (Huth et al., 201},

Experimental Design

The stimuli for this experiment consisted of 129 min of natural
movies drawn from movie trailers and other sources. These
stimuli are identical to those used in earlier experimentsifraur
laboratory (Nishimoto et al., 2011; Huth et al., 201XordNet
was used to label salient objects and actions in each 1s segme
of these moviesHuth et al., 201}, This resulted in 1364 unique
labels. After adding entailed hypernym labels the total nentdf
categories was 1705.

MRI Data Collection and Preprocessing
MRI data were collected on a 3T Siemens TIM Trio scanner at the
UC Berkeley Brain Imaging Center, using a 32-channel Siemens
volume coil. Functional scans were collected using a gradient
echo-EPI sequence with repetition time (TR)2.0045s, echo
time (TE)D 31 ms, ip angleD 70 degrees, voxel sige 2.24
2.24 4.1 mm, matrix siz® 100 100, and eld of viewD 224
224 mm. The entire cortex was sampled using 30-32 axial slices.
A custom-modi ed bipolar water excitation radiofrequendyF)
pulse was used to avoid signal from fat.

Separate model estimation (t) and model validation (test)

and motor vehiclavere present, given the voxel responses. It islatasets were collected from each subject in an interleaved
clear from this formulation that the probability thahotor vehicle fashion during three scanning sessions. The stimuli forttoglel
is present can never exceed the joint probability thator vehicle estimation dataset consisted of 120 min of movie trailetseese
andcarare present, thus respecting the hierarchical relationshipstimuli are identical to the stimuli used imNishimoto et al.

between these categories.

(2011)and Huth et al. (2012)and are available for download

We applied the HLR modeling framework to BOLD fMRI from CRCNS: https://crcns.org/data-sets/vc/vim-2/aboun-

responses recorded from seven subjeEigyre 2). First, fMRI

2. Functional data for the model estimation dataset werkectéd

responses were recorded while the subjects watched 2 h obhatuin 12 separate 10-min scans. The stimuli for the model vailiat
movies. The WordNet {liller, 1995 semantic taxonomy was dataset consisted of 9 min of movie trailers, repeated 10gime
used to label salient object and action categories in eaegh omfrunctional data for the model validation dataset were cbdd
second segment of the movies. Using the 2 h of model estimatidn 9 separate 10-min scans and then averaged. Note that the

data, we then selected the 5000 voxels in each subjecéx¢bat

estimation and validation stimuli were completely distinog

had the most reliable category-related responses (see Methadips appeared in both sets. Throughout stimulus presentation f
for details). The category labels and BOLD responses for tHeoth datasets, subjects xated on a dot that was superimposed on
5000 selected voxels were then used to estimate a separate Hh&movie and located at the center of the screen. The colireof
model for each subject. To test the HLR models we recordedot changed four times per second to maintain visibility.

BOLD responses from the same subjects while they watched Each run was motion corrected using the FMRIB Linear
an additional 9 min of novel natural movies that had not beenimage Registration Tool (FLIRT) from FSL 4.22(kinson and
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FIGURE 2 | Schematic of experiment. The experiment consisted of two stagesmodel estimation and model validation . In the model estimation stage, seven
subjects were shown 2 h of natural movies while BOLD responsewere recorded using fMRI. Salient object and action categaes were labeled in each 1s segment of
the movies. Direct decoding models were then estimated thabptimally predicted the labels from linear combinations ofoxel responses. In themodel validation
stage, the same seven subjects were shown 9 min of new naturahovie stimuli that were not included in the estimation stimus set. These movies were repeated ten
times and the responses were averaged to reduce noise. The priously estimated models were then used to decode which caggories were present in the movies. To
assess model performance, the decoded category probabilies were compared to actual category labels in a separate vialation set reserved for this purpose.

Frontiers in Systems Neuroscience | www.frontiersin.org 4 October 2016 | Volume 10 | Article 81



Huth et al. Decoding the Semantic Content of Natural Movies

Smith, 200}). A high quality template volume was then obtainedtime points wherearwas present. The model was then estimated
by averaging all volumes in the run. FLIRT was also used tasing gradient descent with early stopping. First, the dateewe
automatically align the template volume for each run to thebroken into two sets: 90% of the data were used for gradient
overall template, which was chosen to be the template for théescent and 10% were used to estimate the stopping point. At
rst functional movie run for each subject. These automaticeach iteration the weights were updated based on the gradient
alignments were manually checked and adjusted for accuracgescent data, and then the model error was evaluated using the
The cross-run transformation matrix was then concatenated early stopping data. If the error on the early stopping data did
the motion-correction transformation matrices obtaineding not decrease for ten consecutive iterations, the gradiestent
MCFLIRT, and the concatenated transformation was used tprocedure was terminated. Voxel weights were initialized to
resample the original data directly into the overall tempkgiace. zero and the bias term was set to produce the prior probability
For each voxel, low-frequency voxel response drift waef the category given its hypernym (the prior probability was
identi ed using a median Iter with a 120-s window and this wa computed empirically across the training dataset). Each rhode
subtracted from the signal. The mean response of each voxel waas estimated three times using separate early stopping dataset
then subtracted and the remaining response was scaled to urdhd then the resulting weights were averaged.
variance. We tested whether this gradient descent with early stopping
Anatomical images were obtained using a T1 MP-RAGE pulsproduced di erent results from more standard L2-penalized
sequence. These images were then segmented to obtain a &gression, but found very little di erence. We implementel L
representation of the cortical surface using Caret5 softvj@in  regularized logistic regression using scikit-legPeregosa et al.,

Essenetal., 20D1 2017 with regularization coe cients ranging from 10° to 10,
_ _ For each of three bootstraps, we t the model on 90% of the data
Model Estimation and evaluated the loss on 10% to choose the best regularizatio

The HLR model includes a separate conditional logisticoe cient. We then took the median regularization coe cign
regression model for each category. Each conditional tiogis found over the bootstraps and used it to ret the model on
regression model converts a spatiotemporal pattern of voxehe entire training set. We compared results of this procedure
activity to the binary presence (1) or absence (0) of one cayeg with those using the early stopping approach and found that, on
for time points where all of that category's hypernyms are prese average, regression with early stopping performed slightigbe
While the cortex contains tens of thousands of voxels, man@ver all categories with AUE 0.5 for either regression method,
voxels are very noisy or contain little information abouteth early stopping AUCs were on average higher by 0.09, and 59.0%
stimuli. Thus, to reduce model complexity and reduce noiséy o of categories were better decoded by the early stopping model
5000 voxels in each subject were used as input to the HLR modétan L2 regularization. These di erences appear to be due to
(Models were tested in one subject using 1000, 5000, and 1008éxly stopping doing much better on categories with few positive
voxels. The best performance was found with 5000 voxels.) Texamples.

nd the best 5000 voxels for each subject, we rst used retadd To avoid over tting the model output was smoothed toward
linear regression to estimate an independent encoding modéte original prior probability. We assumed a beta distributed
for each voxel (encoding models predict the response of singf@ior on model outputs, with the mean set to the conditional
voxels as a weighted sum across binary category labels. Thrior probability for each category. We then t a scaling
modeling procedure was repeated 50 times, each time holdingarametett such that

out and predicting responses on a separate segment of the p (SjSi:R D P-Sl&i;s)!C!PI;O maximized the log likelinood

model estimation dataset. Model prediction performance wagt 1 min of held out data (wher®(SjSq: R) is the output of the

then averaged across the 50-folds and the best 5000 VOXg{§istic model for théth label given the other category labels and
were selected. The model estimation dataset was used for ﬂ?ésponses ang.

S -0 Is the prior probability of seeing thigh label
procedure, the validation da_ta were res_erved for use elsewhe given that its hypernyms are present). This smoothed probigbili
For each scene, the spatiotemporal input to the HLR model i§ < \,sed in all subsequent analyses.

a length 15000 vector consisting of the BOLD responses for the All individual category models were then combined to form

5000 selected voxels at three consecutive time points. Mailtipl 1y g model that describes the full probability distributione
time points were included because BOLD responses are sloW, scene labels

taking 5-15s to rise and fall after a neural eveéhvynton et al.,
1996. Including multiple time points in the model allows the
regression procedure to learn a linear lter that will decolw Model Estimation with Label Noise
the slow BOLD response function from the stimulus time courseOne potential issue with the logistic regression approach
Thus to predict the presence of a category at timthe model described above is that the manually assigned categorig lebe
uses voxel responses at tim€, tC3, andtC4 TRs. Witha TR the model estimation dataset might be inaccurate or noisy. To
of 2 s these delays correspond to 4, 6, and 8s. account for this possibility we re-estimated logistic resgien

To build each conditional logistic regression model we usednodels for one subject using the method froBoptkrajang and
only the subset of the model estimation data where all th&aban, 201, which iteratively estimates a 2 2 label ipping
hypernyms of the selected category were present. For examppepbability matrix for each category, where the rst row iseth
to build a model for the categorgports camwe selected all the probability of getting a label of 0 or 1 given that the true lebé®
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and the second row is the probability of getting a 0 or 1 giveatth as the product of the probabilities of obtaining the actualdyin

the true label is 1. We re-estimated each logistic regressamel  label for each category under the model. For the null model we
twice: rstinitializing all the model weights to zero, andsnd used the prior probability according to the model estimation
initializing the model weights to the values found using ourdataset, which was constant over time. We then quanti ed elod
earlier logistic regression approach. In both cases we ligigid  performance as the relative log likelihood ratio between tth&H
the label error probability (i.e., the o -diagonal values hetlabel model and the null model. To estimate chance level performance
ipping matrix) to be 0.1. For both conditions, the ippingmatxi we shu ed the model output for each category across time
rapidly converged to the identity matrix in nearly every catgg 100,000 times, recomputing the log likelihood ratio on each
The maximum estimated label error probability was 0.0088,(i. shu e. The relative log likelihood was declared signi cant if
less than 1%). This suggests that the label ipping matrices fahe probability under the shu ed distribution was below the
this experiment are virtually indistinguishable from theeitity ~ signi cance thresholdg < 0.0J.

matrix. This is likely due to the fact that our stimuli wererdx

labeled by a single individual rather than using a crowdssong

approach such as Amazon's Mechanical Turk. RESULTS
Model Evaluation Decoding Performance for Individual
Receiver Operating Characteristic (ROC) Analysis Categories

For each time point in the validation dataset we predicted thdrigure 3 shows HLR model decoding performance in one
probability that each category was present in the stimulusgisi subject for a few di erent categorietalk, animal, vehicle and

the HLR. Then an ROC analysis was used to assess modiing (similar plots for the other six subjects are shown in
decoding performance for each category. To perform the ROSupplementary Figures 1-7). Panels on the left side of the
analysis we gradually increased a detection threshold frern  gure show the decoded category time course, across the mode
to one. For each threshold we computed the number of falsealidation dataset. Shaded regions indicate periods when th
positive detections (points where the predicted time course i¢ategory was actually present. Panels on the right side of the
higher than the threshold but the category is not present)nd ~ gure show the receiver operating characteristic (ROC) cufore
positive detections (where the predicted time course is highghe corresponding category decoder. The shaded region under
than the threshold and the category is actually present in théhe ROC curves shows the density of the null distribution of ROC
stimulus). Then we plotted the true positive rate (TPR) againsgurves, which was determined by shu ing. All the AUCs shown
the false positive rate (FPR) across all thresholds, produbiag in this gure are signi cantly greater than expected by chanc
ROC curve. (q(FDR)< 0.01).

A common statistic used to gauge detection performance is The rst row of Figure 3 shows the decoded time course
the area under the ROC curve (AUC). An AUC value of 1.0for the verbtalk. The decoded probabilities are very high when
represents perfect decoding, where the decoded probability féalk occurs in the movie and they are relatively low at other
any time point where the category is actually present is highdimes. There are no false positive peaks in the decoded time
than the decoded probability for every time point where thecourse. However, the decoded time course is not temporally
category is absent. We determined chance level of the AUrecise: it takes a few seconds to rise and fall. For example,
by shuing the actual binary labels for each category acros&t 2.7 min into the movietalk appears for a single time point,
time. Blocks of four TRs were shu ed 1000 times to producebut the decoded probability begins to rise several time points
new time courses with the same prior probability and a similai€arlier and then takes several time points to fall back to basel
autocorrelation structure to the original data (we testeties  after the category disappears. This temporal imprecision appears
block sizes but found no dierence in the results). The AUCeven though the HLR model includes responses from multiple
was then computed for each of 1000 shu ed time courses, andime lags, which should partially compensate for the sluggish
the null distribution of AUCs was t with a beta distribution hemodynamic response. This might be because the HLR model
centered at 0.5. Finally, we computed the probability of abitej ~ decodes the categories at each time point independently, and
the actual AUC under this distribution. The actual AUC wasdoes not consider the categories decoded for other time point
declared signi cant if its probability under this null disbution ~ Nevertheless, the area under the ROC curve (AUC) is 0.918,
was below the signi cance threshold. Signicance thredsol demonstrating that the decoder is extremely accurate. This
were determined by applying the Benjamini-Hochberg procedurgéuggests that the cortical representationtalk is su ciently
(Benjamini and Hochberg, 199fo limit the false discovery rate, robust to be decoded reliably using fMRI.

g(FDR) across multiple comparisons to 0.01. The second row ofigure 3 shows the decoded time course
for the categoryanimal. The AUC for animal is 0.911, again
Model Likelihoods indicating that the decoder is extremely accurate. As with

The ROC analysis tests how well each category is decoded acrtak, this suggests that the cortical representatiorapimal is

all time. Yet it is also important to test how well all the caiggs  su ciently robust to be decoded reliably using fMRI.

are decoded within each time point. To test this we calcul#ted The third row of Figure 3 shows the decoded time course
likelihood of the actual category labels at each time poiivery  for the categorywehicle(This is a general category that includes
the decoded category probabilities. This likelihood waspot®ed  several more speci ¢ categories suckasmotorcycleandboas).
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FIGURE 3 | Decoded time courses and decoding performance from one subject for four individual categories. Results for four out of the 479 categories
decoded in this study. Left) Each row gives the decoded probability that a speci ¢ categoy of object or action was present in the movie over time. Bluénes show
the decoded probability and gray regions show time points wkn the category was actually present in the movie. Decoded pbabilities for the verbtalk and the noun
animalare high when those categories are present, and lower at othetimes. However, the probabilities are not temporally prase. For example, at 2.7 min into the
movie talk appears for a single time point, but the decoded probabilityakes several time points to rise and fall. Decoded probaliiies for the nounvehicleand the
noun thing (speci cally thing.n.12, which includes categories as diverse adody of water and body part) are less accurate thartalk or animal However, the decoding
model correctly assigns low con dence to its predictions, asevidenced by the fact that the decoded probability fothing hovers around the prior value of 0.32.Right)
Receiver operating characteristic (ROC) analysis summairig overall decoding accuracy for each of the four categaes. The ROC plots the true positive rate (TPR) ag
a function of the false positive rate (FPR) of the decoder. Plermance of the decoder is shown in blue. Chance performane was determined by shuf ing the stimulus
timecourse and recomputing the ROC curve (see Methods). Thdistribution of curves across 1000 shuf es is shown on the sare plot in gray. The area under the
ROC curve (AUC) is shown within each panel and signi cant vadis (q(FDR) 0.01) are marked with an asterisk. The ROC curves indicate #t both talk and animal
are decoded accurately, butvehicleand thing are not decoded particularly well. Similar plots for the otér six subjects are shown in Supplementary Figures 1-7.

The decoded time course is very high at 6.1 min, wkehicle thing was actually present in the stimulus have only marginally

is actually present in the stimulus. However, the decodecttimhigher decoded probabilities than time points whehing was

course was low during several other periods whvehiclewas not present. The AUC of 0.694 is statistically signi cant, lusi

present. At other times, such as 0.5 min, the decoded timessourmuch lower than the AUC obtained for other categories shown

is high but novehicleis present. In this case the AUC is 0.758,here. This suggests that the cortical representatiothiofg is

indicating that the overall accuracy of the decoder is féliis  not distinctive as is the representations of other, more speci

suggests that the cortical representationetficlés not as reliable categories. We believe that this is becailnseg is an arti cial

or distinctive as the representationstafk or animal. category invented by WordNet that is not strongly represente
The fourth row of Figure 3 shows the decoded time course in the brain.

for the categoryhing. Thing (speci callything.n.12n WordNet)

is a high-level category that includes categories suchoaly Decoding Performance for All Categories

part and body of waterThe decoded time course is consistentlyThe results inFigure 3 showed that the decoder is not equally

intermediate, and there are few times where the decodesuccessful for all categories. To explore this issue further

probability was very high or very low. Time points where acomputed the decoding performance (AUC) for all categories
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FIGURE 4 | Graphical visualization of decoding accuracy. The plot is arranged according to the graphical structure o¥WordNet. Circles and squares denote the
479 categories that appeared in the movies used for model valation. Circles indicate objects (nouns) and squares inctite actions (verbs). Decoding performance
was aggregated across all subjects by concatenating the deaded probability time courses. The size of each marker denes the area under the ROC curve (AUC) fo
that category, ranging from 0.5 to 1.0. The marker colors deate the p-value for that category's AUC; deeper blue re ects largep-values. Categories where decoding
accuracy is signi cant are displayed as lled circles (q(FDRy 0.01). The AUC is high for some general categories, such gserson, mammal, and artifact It is low for
others, such asthing, matter, instrumentality and abstraction. This suggests that some general categories are well represited in the brain at a scale that can be
measured using fMRI, while others are not. The AUC is usuallgw for speci ¢ categories that are more infrequent. This doer't necessarily imply that infrequent
categories are represented poorly in the brain; it may mengle ect insuf cient data. The AUC is also low for background caegories, such asplant, location, and
atmospheric phenomenon This may occur because subjects do not usually attend to thee categories well unless instructed to do so explicitly. &iilar plots for each
subject separately are shown in Supplementary Figures 1-7.
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that appeared in at least 3 time points in the validation
dataset. InFigure 4 we show these AUCs in a graph that is
organized according to the structure of the WordNet semanti
taxonomy (similar plots for each subject separately are show
in Supplementary Figures 1-7; the 30 best-decoded categor|
across all subjects are listed in Supplementary Table 1). He
the color of each node re ects the AUC (integrated across a
the subjects), and the saturation re ects con dence in tHe@
estimate.

Many general categories, such gerson mammal
communicateandstructurewere decoded accurately, suggesting
that these categories are represented by specic, consiste
patterns of activity in the brain. In contrast, other general
categories, such dking and abstraction were decoded poorly,
even though we can accurately decode the hyponyms (
subordinate categories) of these poorly decoded gener
categories. For examplehing is poorly decoded, but its
hyponyms body of waterand body part are both decoded
accurately. This suggests thabdy partand body of water
are represented very dierently, so the linear model canno
decode both categories simultaneously. Among actionswsho
as square markers) we found that communication verbs, trav
verbs, and intransitive movements (ejgmp, turn) were usually
decoded signi cantly and accurately, while consumptionbger
and transitive movements (e.grag pour) were usually decoded
poorly.

Conditional Decoding Performance

The HLR approach assumes that cortical responses follow t
WordNet taxonomy, but this assumption is likely false in some
cases. Therefore we performed an analysis that shows whi
hypernymy relationships in WordNet were not re ected in brain
activity. Under the HLR approach we used WordNet to construc
conditional models that decode the presence of a given catega
including all of its hyponyms. For example, the conditional
model for car must distinguish between any car (e.gtation
wagonsports cgretc.) and any othemotor vehicleThese models
implicitly assume that all the hyponyms of any given categor
elicit similar responses in corteXigure 5). If this assumption

is true, then overall decoding performance will be good, but i
may be di cult to distinguish between the hyponym categories
If this assumption is false, then overall decoding perforneani!

be poor, but it will be easy to distinguish between hyponyms.

We used this logic to construct a test for each hypernymy
relationship in the subset of WordNet used in this study. For
each category, we computed the conditional AUC (cAUC) usin
only the time points in the validation dataset when all the
hypernyms of that category were present. Thus the cAUC shoy
how well a category can be distinguished from its siblings. W
then compared the cAUC to the overall AUC for each category. |
the cAUC was signi cantly higher than the overall AUC, then we
concluded that the assumed relationship between this cayeg
and its hypernym is not re ected in brain activity.

The results of this analysis are shownHigure 6. Here the
cAUC for each category is plotted on the same WordNet grap
used inFigure 4 The size and color of each node re ects the
cAUC of the corresponding category. For categories where th

ies
re

J
2Nt

al

t

1%

ne
ch

t

J FIGURE 5 | Conditional versus full AUC. The HLR assumes that the
structure of WordNet is re ected in the brain. Yet this may nobe the case. If a

VSarticular grouping of categories (shown as blue nodes iR) is strongly

pre ected in the brain, then we would expect that the group wilbe highly

f separable from all other categories. This situation is shawgraphically in

(B), where voxel responses to several categories are plotted ia hypothetical

2-dimensional response space. Categories within a group & shown in blue

and other categories are gray. The voxel response to the cagory we are

trying to decode is shown as a circle. Here the blue categorieare easily

linearly separated from other categories, leading to a higtotal AUC for the

selected category. A different situation is shown ifC), where the grouped

categories do not elicit very similar responses. Here the $ected category is

(Continued)
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toward lower relative log ratios when the number of categoin
F'G_URtE z_|t¢°”‘!“;‘?d 15 sibings than ffom other cagories, leading ¢ a scene is greater (see Supplementary Figure 8), and decoding is
easler to distinguish from Its siblings than from other cagories, leading to a . . .

high cAUC and lower total AUC. This suggests that for WordNebased relatively poor for Scen'es tha,t contain unusual (?ategosesr(
category groupings that are not re ected in the brain, the cAWC will be 3_15 CIOS?'Up scene of \_Nme be_u_']g poured into a Wlneglass) and for
signi cantly higher than the total AUC. time points that contain transitions between scenes.

Comparison of Original Movies with
CAUC is signi cantly higher than the overall AUC, the edge Decoded Categories

linking that category toits hypernymis colored red (all sigant 1 provide an intuitive and accessible demonstration of the

relationships are listed in S.upple.ment.ary Table 2). In tota, Wperformance of the HLR decoder, we constructed a composite
found that 17 of the relationships given by WordNet were ;jaq that shows the stimulus movie on the left, and the
signi cantly inconsistent with brain responses. Severati#  5ieq0ries with the highest decoded probability on the right
signi cantly inconsistent relationships highlight categes that  gee supplementary Video 1). The size of each label corresponds
are technically related, but which are very di erent from ihe (5 the predicted probability that the category is present. Note
siblings. For exampleplant is the only non-animate branch of 4t the stimuli shown here are from the model validation, set
organismhorses the only equine ridden by humans, apnguin - 54 \vere not used to train the decoder. This demonstration

is the only ightlessseabird Other signi cantly inconsistent = ghq\ys that the decoder successfully recovers informatimia
relationships appear between very high-level categoriesly lik many categories regardless of the specic content of the
re ecting di cult choices made in the design of WordNet. For 0 ia

example, the relationships betwetlimg (speci callything.n.12
and its hyponym$ody partandbody of wateseem arti cial. In . . .
sum, these results show several category relationshipstibatd Mapping Decoding Model Weights across

be reconsidered if WordNet is to be used to further model brai the Cortex

responses. Since the HLR decoder seems able to recover many object and
action categories from BOLD responses, one might naturaky a

Decoding Performance for Individual Time which voxels are used to decode each category. However, note

Points that decoding results must be interpreted with caution; agki

The HLR model recovers information about the presence ofvhich voxels contribute to decoding is not equivalent toiagk
individual categories in the stimulus, but in natural mowimany ~ Which voxels representinformation about a categotyi(fe etal.,

di erent categories appear at each point in time. To test how?014; Weichwald et al., 2013/oxels that have small (or zero)
well the HLR model decodes all of the categories present at eag@ecoding weights for a category may still represent infororati
time point, we computed the probability of the actual categerie about that category, but if the voxel also represents inforomat
present in the stimulit), given the model estimates,.t/ D  about other categories then it might not be particularly usésu
©.S.t/jR). In order to compare to the level of performance decoding. Conversely, voxels that have large decodinghteeig
that would be expected by chance, we normalized this value yay not represent information about a category, but might
the prior probability of the actual categorieBy(S. Here we instead be correlated (or anti-correlated) with noise in efsx
approximatedPy(S) by setting it equal to the proportion of the that do represent that category. These interpretationalessu
time that the categony§ was present in the movies used for are much less serious for encoding modetsiii et al., 201y,
model parameter estimation. Thus, the likelihood of the dteb ~ Which predict responses from stimuli rather than predicting

Category relative to the prior for each time point is given by stimuli from responses. Voxels that have small enCOding rhode
weights for a category are likely not involved in representing
PED)j" .t/) that category. Voxels that have large encoding model weights
W either respond directly to the category or to some aspect of the
stimulus that is correlated with the category. For thesesoes,
Figure 7 shows the relative log likelihood across time, averagede direct readers who are interested in how these categanges
across subjects (similar plots showing data for each subjerpresented across the cortex to our encoding model study tha
separately are shown in Supplementary Figures 1-7). Laged the same dataset asthe one analyzed Heité et al., 201
likelihood ratios greater than zero indicate periods whenRHL  To illustrate the diculty of interpreting decoding model
model estimates are relatively more likely than the priord an weights, we plotted both decoding and encoding weights for
log ratios less than zero indicate periods when the model isne categoryperson.n.Qlon cortical at maps for one subject
relatively less likely than the prior. This gure shows thahee (Figure 8 For illustrative purposes this decoding model was
periods in the movie are decoded consistently better thanrsthe t using the entire dataset rather than only the time points
Examination of the stimuli that appeared during the peaks andontaining the hypernyms gdersoi. Earlier studies have shown
troughs in decoding performance shows that decoding is moghat several brain areas respond selectively to human fawks a
accurate for underwater scenes and for scenes that containbadies, including the fusiform and occipital face areas [FFA
single person. These scenes contain only a few categotie$, alKanwisher et al., 199& OFA Kanwisher et al., 1997; Halgren
which are well-modeled by the decoder. We observe a weadt trert al., 199Pand the extrastriate body area (EB®wning et al.,
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FIGURE 6 | Graphical visualization of decoding accuracy afte  r conditioning on parent categories. Decoding performance for each of the 479 categories,
conditioned on the presence of their hypernym in the scene,@ncatenated across subjects. The gure is arranged identicly to Figure 4. The conditional AUC (cAUC)
was computed only on time points where the hypernyms of a catgory are present, which forces the model to discriminate amogst sibling categories. If the cAUC for
a category is greater than the full AUC, it means that the cagory is easier to distinguish from its siblings than from o#tr categories. The signi cance of this difference
was evaluated for each edge in the WordNet graph. If a categorig signi cantly less similar to its siblings than would be exgcted by chance, the edge is colored red.
Thus WordNet links between categories that are unrelated ithe brain appear red. Edges betweerthing and its hyponymsbody of water and body part appear red
because these categories are not represented similarly imé brain. Also, the edge betweenorganism and plant appears red, likely becauseplant is the only
non-animate hyponym oforganism. Categories for which the conditional entropy is too low toeliably estimate cAUC are colored gray.
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FIGURE 7 | Overall decoding performance at each time point acros s all object and action categories.  Here results at each time point have been averaged
across all ve subjects. Decoding accuracy is expressed as th log likelihood of the actual category labels given the moderelative to the prior likelihood that each
category is present. Values at zero indicate that the modelgrforms as well as would be expected by merely guessing basedn prior probabilities. Shaded regions
indicate performance signi cantly better than chancef < 0.01 uncorrected, permutation test). Two examples of welecoded time points are shown at the top. One
is a man walking, the other is an underwater scene showing a $wol of sh. These are simple and stereotypical scenes that ca be decoded accurately. Two examples
of poorly-decoded time points are shown at the bottom. One iamid-fade transition between scenes of a horse jumping and a wman drinking, the other is a closeup
of a deer's eye. The transition scene cannot be decoded accuately because the temporal precision of the decoder is pooiThe deer eye is an atypical scene that is
found rarely in the stimuli used to estimate the voxel-wise odels. Similar plots showing data for each subject separatg are shown in Supplementary Figures 1-7.

200). Therefore one might naively expect that voxels in alkrroneous conclusions, and should thus be avoided whenever
of those areas would be assigned large positive weights in tpessible. Instead, questions about cortical representationld
decoding model foperson However, the decoding model only be answered using encoding approaches.

has high weights in the face areas (FFA and OFA), but not the

body area (EBA). Thus, interpreting the decoding model wisigh

directly would lead to the conclusion that EBA does notrepregs DISCUSSION

information about humans. In contrast, the encoding modakh

high weights in EBA as well as the face areas, demonstrdtiig t In this study we showed that it is possible to accurately decod
EBA does, as expected, respond to the presence of humans.tBe presence or absence of many object and action categories
why was EBA ignored by the decoding model? One possibilitin natural movies from BOLD signals measured using fMRI.
is suggested by our earlier encoding model study, which skdow These include general categories, suclarmal and structure

that EBA responds to both animals and humans, but that FFApeci ¢ categories, such aanineandwall, and actions, such as
and OFA are both relatively more selective for human facetalk and run. However, decoding accuracy was better for some
(Huth et al., 201p. Based on these encoding model resultscategories than it was for others. In particular, we foundttha
the conclusion from the decoding model—that EBA does notlecoding accuracy was generally better for scenes thaaiceak
represent information about humans—appears false. Instearklatively fewer categories than for scenes containingtively

we should conclude that EBA represents information aboumore categories. This suggests that the amount of category-
humans in addition to other categories. This example illustsa related information available in BOLD signals at each timapo
that directly interpreting decoding weights can easily léad is limited.
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FIGURE 8 | Flattened cortical maps showing example decoding an d encoding model weights for one category. We plotted both decoding and encoding
model weights for one category,person.n.01, in one subject. For the purpose of this visualization we castructed a direct logistic decoding model for this category
(i.e., we did not condition on its hypernyms). We averaged thdecoding weights across the three delays within each of th&000 voxels, and then rescaled the
resulting average weights to have a standard deviation of @. Similarly, we averaged the encoding weights for the same@0 voxels across the three delays and then
rescaled the results. For the decoding model, we see large psitive weights in the occipital face area (OFA) and fusiforface area (FFA), suggesting that activity in
those regions predicts the presence of a person in a visual @me. For the encoding model, we also see positive weights in EA and FFA, but some of the most
positive weights appear in the extrastriate body area (EBAJhis suggests that the presence of a person in a visual scengredicts EBA responses. However, the lack
of large EBA weights in the decoding model suggests that EBAesponses are not speci ¢ to seeing a person. This illustrateshe inherent dif culty of interpreting
weights from a decoding model.

Our decoder used a HLR model based on the graphica means to decode information at many dierent levels of
structure of WordNet, a semantic taxonomy that was manuallydetail simultaneously. This is vital for decoding natursili,
constructed by a team of linguistsl{ller, 1995. This hierarchical where it is unclear what level of detail should be used to
approach has two important features that make it attractivedescribe any particular object or action. For example, the same
for decoding categories from natural stimuli. First, it pides object could be correctly labeled awehicle car, sports caror
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Ford Mustang By decoding all levels of detail simultaneouslycategory fails to share many features with the general oateg
the HLR model sidesteps the question of which level is modtor example, the relationship betwegsant and organism
appropriate: a scene has some probability of containinghacle was not re ected in brain activity, likely becaug#ant is
some probability of containing &ar, and so on. This allows the only inanimate hyponym oforganism The second type
the HLR model to decode relatively more general categorieme relationships that seem abstrusely academic and may
when speci ¢ categories occur infrequently or when they arde idiosyncratic to WordNet. For example, the relationships
di cult to distinguish using the brain data. For example, the betweenthing.n.12and its hyponymsbody partand body of
HLR could show that it is dicult to decode the specic waterwere not re ected in brain activity, likely due to the fact
categoryFord Mustandout easy to decode the general categoryhat body partand body of waterare not similar categories
vehicle Using multiple levels of detail also allows the HLRby most metrics. It is possible that modifying the WordNet
to generalize to new categories: evenFdrd Mustangdid hierarchy by removing or changing these poorly represented
not appear in the model estimation dataset, the HLR mightelationships would actually improve decoding performance.
decode the presence ofr based on earlier examples of that Modifying WordNet based on brain data might also prove
category. useful for understanding how categories are represented in
The second important feature of the HLR model is thatthe brain. Future studies might even replace WordNet with a
it uses the relationships between categories to rationallgierarchy learned entirely from brain data. E orts to consttu
constrain the decoding results. If these constrains wereategory hierarchies directly from brain data have already
not included, simultaneously decoding hierarchicallyatetl yielded plausible results for a few categori€sggeskorte et al.,
categories could easily lead to nonsensical results. Fonge, 2009.
a naive simultaneous decoder might nd that the probability One alternative to the HLR approach would be to decode
of a particular scene containing ear is higher than the only the “basic level” categoriefRR@sch et al., 19%6 This
probability of that scene containing eehicle This would be would simplify some aspects of the modeling, since it would
impossible, since evemar is also avehicle The HLR avoids obviate the need to account for relationships between caiego
this issue by constraining the decoded probability of anyFurthermore, basic level categories might be better reptede
category to be at most equal to the decoded probability ofh cortex than superordinate or subordinate categoriesdan
that category's hypernyms in WordNet. This approach buildset al., 201} However, a basic-level decoder would not be as
on an idea known as “structured output’ or “hierarchical powerful as the HLR decoder. First, the basic level category
learning” (DeCoro et al., 2007; Silla and Freitas, 201d of a particular object is highly dependent on contekiotch,
eld of machine learning concerned with problems where thel979. For example, observers might agree that the basic level
output is known to have some specic statistical structurecategory for a speci c object in a city scene#s, but the same
In the decoding problem that we are addressing here, thebject seen in a car dealership might be cabpdrts carlt is
structure of the output is de ned by the WordNet category not clear that estimating separate decoding modelsctorand
hierarchy and the knowledge that a category can never bsports camwould make sense in this situation. Second, it would
present unless its hypernyms are present. This information ibe impossible for a basic level category decoder to genetalize
incorporated into the model by using what is known as anew categories. For example, suppose that several scenes in the
“local” or “siblings” policy for selecting the negative tieig  validation dataset containedains,but that trains did not appar
examples for each categoryViener et al., 1995; Silla and in the estimation dataset. While neither the HLR model nor a
Freitas, 201)l This nomenclature comes from the fact that basic level decoder would be able to directly decode the pcese
the negative examples for each category are chosen to be thfetrain, the HLR model might be able to decode the presence
time points where the category's siblings are present (ang thwf vehiclebased on other examples such as cars, boats, and
the category's parent is present), but where the categorlf itsairplanes.
is not. This approach is also able to make model estimation Another alternative to the HLR model would be to represent
more computationally e cient without decreasing performagc categories not as binary variables, but as vectors of festtopic
because it only uses relevant training exampleag(i and probabilities Gtansbury et al., 20),3or co-occurrence values
Sebastiani, 2007 from large text corporallitchell et al., 2008; Turney and Pantel,
One potential issue with the HLR approach is its implicit2010; Wehbe et al., 2014; Huth et al., 20This type of model
assumption that all the hyponyms of a category elicit similawould have several advantages over binary decoders. &irst,
brain responses. This could lead to problems because theocgtegfeature-based decoder could improve generalization bedause
relationships come from WordNet, which is a hand-constracte would only require that all the features were present in the
semantic taxonomy and thus is not guaranteed to re ect brairestimation stimulus, and not necessarily that every irdliail
activity. To address this issue, we tested each of theorkdtips category was present. Second, the HLR model assumes that
speci ed in the subset of WordNet spanned by our stimuli.each category is independent of every other category given
This was done by examining how easily each category could lits hypernyms. This assumption is clearly false in many cases
distinguished from its siblings under the same hypernym. (Blei et al., 2003; Stansbury et al., 20Edr example, although
We found that two speci ¢ types of WordNet relationships car and road are distant relatives in the WordNet taxonomy,
were not re ected in cortical representations. The rst arethey are highly correlated in natural stimuli. A decoder tha
relationships that are technically correct, but where thecspe takes these statistical relationships into account could lmam
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