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In this article we introduce Pyrcca, an open-source Python @ckage for performing
canonical correlation analysis (CCA). CCA is a multivaratanalysis method for
identifying relationships between sets of variables. Pyca supports CCA with or without

regularization, and with or without linear, polynomial, ofSaussian kernelization. We
rst use an abstract example to describe Pyrcca functionaty. We then demonstrate
how Pyrcca can be used to analyze neuroimaging data. Speci ally, we use Pyrcca to
implement cross-subject comparison in a natural movie furttonal magnetic resonance
imaging (fMRI) experiment by nding a data-driven set of fustional response patterns
that are similar across individuals. We validate this crossubject comparison method

in Pyrcca by predicting responses to novel natural movies aoss subjects. Finally, we
show how Pyrcca can reveal retinotopic organization in brairesponses to natural movies
without the need for an explicit model.

Keywords: canonical correlation analysis, covariance ana
squares regression

lysis, Python, fMRI, cross-subject alignment, partial least

1. INTRODUCTION

Covariance analyses are regarded as one of the simplest apgsdachnding similarities across
datasets. One type of covariance analysis, known as canamp&lation analysis (CCA), is
commonly used in statistics. CCA was rst introduced biptelling (1936)as a method for
nding relationships between two sets of variables. In thbsggquent decades it has been extended
(Hardoon et al., 200dand applied in a variety of scienti ¢ elds, from climate modej (Barnett
and Preisendorfer, 19%7to computational biology Yamanishi et al., 2003to neuroimaging
(Hardoon et al., 2007; Correa et al., 2010; Varoquaux et @L0)2In this article we present
Pyrcca (PYthon Regularized Canonical Correlation Analysis) open-source Python package
for performing CCA between two or more datasets. Pyrcca suppG€A with and without
regularization and kernelization.

There are several existing software packages that implem@aAt Several implementations
are available in MATLAB: Kernel Method Toolbox (https://sodarge.net/projects/kmbox/),
emiCCA (http://www.neuro.uestc.edu.cn/emiCCA.htnibong et al., 2015 and CCA-fMRI
(http://cca-fmri.sourceforge.net/) in SPMr(iston et al., 1994 To our knowledge, there are two
implementation of CCA in Python. The cross-decomposition ratedin scikit-learn Pedregosa
et al., 201)Lincludes an implementation of CCA. However, it does not ud® kernelization.
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Additionally, the package PyKCCA (https:/github.com/X andY, X D (x1,X2,:::Xn) 2 RY "andY D (y1,¥2,:::Ym) 2

lorenzoriano/PyKCCA) implements kernel CCA. However,RY ™ (wherex;, y; are d-dimensional vectors), CCA nds a

it includes minimal documentation and may not be activelycanonical coordinate space that maximizes correlationaden

maintained. the projections of the datasets onto that space. For each
In contrast, Pyrcca brings an implementation that supportsdimension of this coordinate space, there is a pair of projectio

both kernelization and regularization to the open-sourceweight vectorsg D (ay,ay,:::anj) andb; D (b, by, ::: bmj)

scienti ¢ Python ecosystem. Pyrcca includes detailedimsions  calledcanonical weightd he resulting projections of datasets

and examples of general usage and applications to neuroimagiagdY onto each dimension of the canonical space are a pair of d-

analysis. In this article, we demonstrate application of Bgrc dimensional vectorsy; D hg;, Xi andyv; D hoj, Yi, that are called

to neuroimaging data. We analyze publicly available fMRI dataanonical components canonical variatesCCA maximizes the

recorded from the visual cortex of three subjects who wereorrelations between each pair of canonical components:

watching natural movies\(ishimoto et al., 2011, 20)AVe then

use Pyrccato ndasetof matching brain response patternssscro i D max—-——_

the three subjects. Although this article focuses on useyofda kujkkv;k

to analyze neuroimaging data, Pyrcca can be used to analyze an,

timeseries data. We therefore hope that Pyrcca will also be use - .
. L A . . Canonical components; and vy, such that the correlation 1
in other scienti ¢ elds that require timeseries analysis.

This article is structured in the following way. Section 2betweeru1 andvy is maximized. The second pair of canonical

introduces mathematical de nitions and describes how CGA i componentsu; and v, I.S then.fo.und, su.ch that the correlatlon
2 betweenu, and vo is maximized, with the constraint that

computed. Section 3 describes the functionality of the Ryrcc .
. . . . the canonical componentsi, and vo are orthogonal to the
package. Section 4 illustrates the use of Pyrcca with anizeéeal . : .
preceding canonical components and vi, respectively. The

example: nding linear relationships between two arti cially ) S .
. . . total number of canonical component pairs is constrained by the
constructed, interdependent datasets. Section 5 illustréte . . . .
dimensionality of datasets andY, and it must be less than or

use of Pyrcca in neuroimaging analysis: performing CCA-hase . .
. . o equal to mirfm, ng However, to prevent over tting the number
cross-subject comparison on a real fMRI dataset. To facilitsge u . . g
. of canonical component pairs that are computed is usually fewer
of Pyrcca we have released the source code on GitHub (http; an minfrm.n
github.com/gallantlab/pyrcca), along with Jupyter noteb®ok N9

(Pérez and Granger, 200dontaining code and results presented In practice, solving CCA iteratively is both computationally
in Sections 4. 5 ’ intensive and time-consuming. Therefore, it is conveniento

formulate CCA as a generalized eigenvalue problem that can be
solved in one shot. To do so, the objective function, whidve®
2. CANONICAL CORRELATION ANALYSIS for the maximum of the canonical correlation vector, is réven

. . . ) ) . in terms of the sample covarian€xy of datasetX andY and
CCA is a method for nding linear correlational relationgts autocovarianceBxx andCyy:

between two or more multidimensional datasets. CCA nds a

huj, vji

1)

eoretically, CCA is solved iteratively by rst nding a paof

canonical coordinate space that maximizes correlationséen hu, vi (@ X) (bY)
- D max —_—
projections of the datasets onto that space. CCA shares kukkvk ka Xkkb Yk
many mathematical similarities with dimensionality redion aCyyb
techniques such as principal components analysis (PCA) and D maxp (2)
: . : : kalCx x akkb™Cyvy bk
with regression methods such as partial least squares signes
(PLS). Without constraints on the canonical weights and b, the

CCA has many characteristics that make it suitable for aialysobjective function has in nite solutions. However, theesiaf the
of real-world experimental data. First, CCA does not requirecanonical weights can be constrained, such #%jxa D 1, and
that the datasets have the same dimensionality. Second, CCb@nyb D 1. This constraint results in the following Lagrangian:
can be used with more than two datasets simultaneously dT hir

CCA does not presuppose the directionality of the relationship L( ,ab) D aCxyb —X(aOCxxa 1) —Y(bOnyb 1) (3)

between datasets. This is in contrast to regression mettiads 2 2

designate an independent and a dependent dataset. Fourth, CGA\¢ objective function can then be formulated as the foligyi

characterizes relationships between datasets in an intatgee generalized eigenvalue problem:

way. This is in contrast to correlational methods that mgrel

quantify similarity between datasets. 0 Cxy a o2 Cxx O 4
CCA has one disadvantage relative to some other methods: it Cyx O b 0 Cyy )

can easily over t to spurious noise correlations betweeradats.

However, over tting can be avoided by curbing the size of thé=or CCA with more than two datasets, the generalized eigeeva

canonical coordinate space, by regularization, or both. problem can be extended simplyttenring, 197):
10 1 0 1
2.1. Mathematical De nitions @ 0 Cxy szA @aA Z@Cxx 0 o0 R
CCA is a method for nding linear relationships between two or Cvx 0 Cyz bA D 0 Gy O ©)
more multidimensional datasets. Given two zero-mean ddtas Czx Czv O c 0 0 Cz
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2.2. Regularized CCA If the kernel function used for kernel CCA is invertible then
If datasetsX and Y have dimensiond < min fm,ngthen regularization must be used. This is because a trivial and
CCA s ill-posed and the generalized eigenvalue problem dannandesirable solution can be found by settiad® 1 and solving

be solved without regularization. Imposing L2 regulariaati for b: b D 1Ky Ky (or vice versa). With regularization this
resolves this problem by constraining the norms of canonicatrivial solution is avoided. The objective function for tdgrized
weightsaandb. Imposing the L2 penalty maintains the convexity kernel CCA becomes:

of the problem and the generalized eigenvalue formulation. &Ky Kvb
However, regularization relaxes the orthogonality coristraf D maxg XY (11)
the canonical components. Regularization is incorporatedhn t (@KZaC kak?) (bK2bC kbk?)

objective function:
The generalized eigenvalue problem is reformulated to solve

aCxyb (6) regularized kernel CCA:
(alCxxaC kak2) (bCyyb C kbk?2)

D maxp

0 KxKy aD2K>2<CI 0
The generalized eigenvalue problem is also modied to KyKx 0 b 0 K$C I

incorporate regularization:

(12)

While kernel CCA is advantageous for capturing nonlinear
0 Cxvy a D 2 Cxx C | 0 7 relationships, it presents additional challenges due toctele
Cyx O b 0 CyyC | of the kernel function and regularization coe cient, as well

) ) ) o ) as diculty in the interpretation of the kernel canonical
Regularized CCA is mathematically similar to partial leastomponents.

squares regression (PLS). Compare to the objective function
CCA (Equation 2) the objective function thatis optimized ih®  2.4. Cross-Dataset Prediction with CCA
CCA nds a symmetric set of common dimensions across

D maxg‘m (8) datasets. These dimensions are the canonical componentkeUnl
aabh regression methods, CCA does not assume a causal relaponsh

Analogously to CCA, PLS can be solved as a generaliz@&“’"een datasets. Instead, it assumes that the datasets are
eigenvalue problem: ' dependent on one or more common latent variables. However,

it is possible to reframe CCA as a predictive model. Once CCA
0 is estimated between two or more datasets, and the canonical
| ©) components and canonical weights are estimated, new samples

from one of the datasets can be predicted from the canonical
The di erence between CCA and PLS is that the PLS objectigeights and new samples from the other datasets. This cross-
function is not normalized by the autocovariance of the datadataset prediction is accompﬁshed by projecting new Samp|es
Thus, PLS can be thought of as an asymptotically larggom all but one dataset onto the canonical space. The new
regularization of CCA, wher€€xx C | and Cyy C | are  samples from the remaining dataset can then be predicted as
dominated by I. the dot product of the inverse of the canonical weights forttha
2 3 Kernelized CCA dataset and the new samples from the other datasets projected

. . . . . onto the canonical space via the canonical weights:
Sometimes itis useful to project the data onto a high-dimenal
space before performi_ng CCA. This i_s known as thf_e kernel trick. YpredictedD b 1 (a%(novep (13)
If a linear kernel function such as an inner product is useerth o _
kernelization is a form of dimensionality reduction. If amimear  If the observed novel data for the remaining dataset ardatiai
kernel function such as a polynomial or a Gaussian kernel it1e accuracy of the cross-dataset prediction can be quahte
used, then kernelization allows the analysis to captureineat ~ correlating the predicted samples with the actual samplesgalon
relationships in the data. each dimension of the remaining dataset.

To perform kernel CCA, a kernel function(X) is chosen and

the data are projected onto the kernel space:
XD (X1, X200 %) | (X)D ( 1(X), 20X),:::, (X)), Cros.s-dataset preqliction relies on inverting th.e canoqivmight .
matrix. However, in most cases the canonical weight matrix
wheren < K. will not be positive de nite and therefore it will not be
are used instead of invertible. In this case, a pseudoinverse must be used to invert
the canonical weights. For stability, the pseudoinverse lman
regularized. In Pyrcca, we provide the option for pseudoirwers
regularization using the spectral cuto method, in which dina
eigenvalues are discarded during singular value deconiposit
0 KxKy a 5 K>2< 0 Other regularization methods, such as L2 penalty, could also be

KyKx 0 b D 0 K$ (10) used, though they are not currently implemented in Pyrcca.

0 Cxy aD2|
Cyx O b 0

accuracyD corr(Y predicted Ynove) (14)

Kernel projections of the datd{x and Ky,
datasetX andY to solve CCA. The canonical componentand

v are projections oKy and Ky onto the canonical space. The
eigenvalue problem is reformulated in termskgf andKy:
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3. PYRCCA FUNCTIONALITY 'gaussian’  and'poly’ . The valuégaussian'  speci es
that a Gaussian kernel function is used. The variance for

Pyrcca is a Python package for performing CCA. Itis hosted in ghe Gaussian kernel function is specied using an additional
public GitHub repository (http://github.com/gallantlab/pgea).  attribute gausigma , set to 1.0 by default. The valtely’
For simplicity, the package is de ned in one le: rcca.py. Pyrccapeci es that a polynomial kernel fucntion is used. The degfee o
requires three third-party libraries: NumPy/¢n Der Waltetal., the polynomial kernel function is speci ed using an additional
2019, SciPy ones et al., 20pJand h5py Collette, 201 attributedegree , set to 2 by default.

The Pyrcca work ow is depicted iffigure 1 The analysis ~ The oating point attribute cutoff  controls evaluation of
begins by instantiating one of two analysis classes de negross-validation results in Pyrcca. As described in Secid,
in rcca.py, rcca.CCA or rcca.CCACrossValidate . CCA can be used for cross-dataset prediction across datasets
The rcca.CCA class allows the user to predene two which requires computing a pseudoinverse of the canonical
hyperparameters: the regularization coe cient and the numbe \eight matrix if that matrix is not invertible. The pseudoiense
of canonical components. Thecca. CCACrossValidate can be regularized using the spectral cuto method. The
class allows the user to estimate these two hyperparametef@ribute cutoff  speci es the eigenvalue threshold used for
empirically by using grid search with cross-validation. regularization. Eigenvalues smaller thantoff  are set to

Bothrcca.CCA andrcca. CCACrossValidate classes zero during singular value decomposition. The default valfie o
inherit from the base parent class rcca._CCABase. The classioff is 0.0 (i.e., no regularization).
rcca._CCABase is not used for analysis, but de nes attributes The Boolean attributererbose determines whether status
and methods shared by its two child classes. messages about the analysis are returned to the console. The

.. q ib default value iSrue , which means that the status messages are
3.1. Pyrcca Instantiation and Attributes returned. Ifverbose is set toFalse , the status messages are

The code below shows how theca.CCA  class is instantiated gppressed.
with the regularization coe cient 0.1, and with 5 canonical  \yhen thercca. CCACrossValidate

class is used, two
components to be computed.

additional attributes can be specied to control how the
import  rcca grid search with cross-validation is implementedimCVand
cca = rcca.CCA(reg=0.1, numCC=5) select

The integer attributenumCVspeci es the number of cross-
validation iterations used for testing each set of hyperpasizns
(the regularization coe cient and the number of canonical

If the attributesreg and numCCare not instantiated explicitly,
the default values areeg D 0.0 (no regularization) and

numCCD 10. . -
The code below shows how the cor;]r[])onentt_s). Tha_uTCt\t/ggtrltbutelhats a (jjeftault \_/aluellls 10.th
rcca.CCACrossValidate class is instantiated with € oaling point attribute seiec etermines how the

accuracy metric is computed during cross-validation. Tdeai

éaach set of hyperparameters, a CCA mapping is estimated for

a subset of the data during each cross-validation iteratiord

cross-dataset prediction is performed on the held-out datee T
import rCCgCAC Validate( - predictions are correlated with the actual held-out dataeTh
cea 1’;?;' . 1],r0:jmaclc:[g,r%?8 4][)e : prediction performance is quanti ed by taking the mean of the

correlations for a portion of the samples that are predicted imos

If the attributes regs and numCCs are not accurately. The attributeclect speci es the proportion of the

instantiated explicitly, the default values aresg D  samples that is used. The default value ofdhéect  attribute

numpy.array (numpy.logspace ( 3, 1, 10)) (ten is 0.2, meaning that 0.2 of the samples are used. Using a subset

logarithmically spaced values between 110 3 and 1 10Y)  of the samples to compute the accuracy metric is advantageous

andnumCCD numpy.arange (5, 11) ( ve consecutive integer when a large number of the samples are noisy.

values between 5 and 10). The ranges of hyperparameter values

can be passed to theca. CCACrossValidate class object 3.2. Pyrcca Implementation and Methods

three regularization coe cient values: 18, 10 2, 10 1, and
with three numbers of canonical components to be computed:
3,4.

as either lists or NumPy arrays. After a CCA object is created with the attributes de ned
Four additional attributes can be specied at instantiationabove, the analysis is run using theain() method.

for both classescca.CCA andrcca.CCACrossValidate : After CCA training is complete, the resulting canonical

kernelcca ,ktype ,cutoff ,andverbose . mapping can be tested using thalidate() method, which

The Boolean attribute kernelcca speci es whether performs cross-dataset prediction with novel data. An addiail
kernelization should be used (described in Section 2.3 Thevaluation of the canonical mapping can be implemented using
attribute is set tolrue by default, which means kernelization is the compute_ev()  method, which quanti es the variance

used. Ifkernelcca s settoTrue , the string attributectype explained by each canonical component in novel data. The
speci es the type of kernel function that is used. There are twonethodssave() andload() are used for saving the analysis
accepted values fditype . The default value isinear’ , ondisk in the HDF5 format, and for loading a previously saved

which species that a linear kernel function (i.e., the inneranalysis into memory, respectively. We describe each of these
product of the data) is used. The other accepted values areethods in detail below.
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1. In Python, import Pyrcca module.

import rcca

!

2. Initialize the CCA object.

with specific hyperparameters: with a range of hyperparameters:

cca = rcca.CCA() cca = rcca.CCACrossValidate()

!

3. Train CCA analysis with 2 or more datasets.

cca.train([datasetl, dataset2, ...])

!

~
4. Test CCA analysis mapping with held-out datasets.
cca.validate([vdatasetl, vdataset2, ....])
l J
5. Compute variance explained by the components for each feature.
cca.compute ev([vdatasetl, vdataset2, ...])
y,

FIGURE 1 | Pyrcca work ow. [1] The Pyrcca Python module is imported using the commandnport rcca . [2] A CCA object is initialized in one of two ways. If
speci ¢ hyperparameters (the regularization coef cient andhe number of canonical components) are used, thecca.CCA class object is initialized. If the

hyperparameters are chosen empirically using cross-validion, then thercca. CCACrossValidate class object is initialized. [3] The CCA mapping is estimatk
using the rcca.train() method with training datasetsdatasetl , dataset?2 , etc. [4] Once the CCA mapping is estimated, its accuracy carbe tested using the
method rcca.validate() with held-out datasetsvdatasetl , vdataset2 , etc. [5] The variance explained by each estimated canoni¢@omponent for each

feature in the held-out data is computed using the methodcca.compute_ev() with held-out datasetsvdatasetl , vdataset2 , etc.

3.2.1. Pyrcca Training When using thecca. CCACrossValidate object class, grid
Thetrain() method estimates the CCA mapping between twesearch with Monte Carlo cross-validation is rst used to nd
or more datasets. The datasets are passed to the methodtasf a lishe optimal set of hyperparameters. During each cross-vadidat
NumPy two-dimensional arrays (number of samples by numbeiteration, randomly selected 20% of the training data, coisgat
of dimensions). Therain() method is the only method that of blocks of 10 consecutive samples, is held out. CCA mapping
di ersin its implementation between the two CCA object classe is done using the remaining 80% of the training data, for each
rcca.CCA andrcca.CCACrossValidate . possible set of the hyperparameter values. Then, cross-dataset
When using thercca.CCA object class, the analysis isprediction is performed using the estimated CCA mapping and
only run once with predetermined hyperparameters (thethe held-out20% of the training data (for details on crosgatet
regularization coe cient and the number of canonical prediction, see Section 2.4).
components). The code below shows how training is The accuracy of prediction is quantied for each
implemented for two datasets after instantiating thea. CCA cross-validation iteration in order to choose the optimal
class object with regularization coe cient 0.1 and 5 cammali hyperparameters. The mean of the highest correlations

components: between predicted and actual samples is used to quantify the
import  reea prediction accuracy. The portion of the correlations used iisth
cca = CCA(reg = 0.1, numCC = 5) computation is speci ed using theelect  attribute. The pair
cca.train([datasetl, dataset2]) of hyperparameters with the highest cross-dataset prediction
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accuracy is then chosen, and CCA is run on all training datawi The compute_ev()  method adds the attributev (variance

those values. explained for each component, for each dimension of the test
The code below shows how training is implemented in Pyrccaata).
for three datasets. First, iaca.CCACrossValidate class

object is instantiated with three possible regularizatioa cient ~ 3:2.4. Saving and Loading the Analysis in Pyrcca _
values: 103, 10 2, and 10 %, and with three possible numbers of Thesave() method saves all the attributes in the Pyrcca object

canonical components: 2, 3, and 4. to an HDF5 le. Theload() method loads attributes from
, an HDF5 le with a Pyrcca analysis saved using theve()
import  rcca
cca = roca CCACrossValidate(regs=[1e-3, method. Both thesave() and theload() methpd are the
le-2, 1e-1], numCC=[2, 3, 4]) same for thercca.CCA and rcca.CCACrossValidate
cca.train([datasetl, dataset2, dataset3]) object classes. The code below shows how the analysistascri
) . above can be saved to disk and then loaded from disk in a new
The train() method adds three new attributes to the ggqqign:

CCA object:comps (canonical components)ys (canonical _

weights), andcancorrs  (canonical correlations). For the 'mPort reca .
rcca.CCACrossValidate object, thetrain() method el = lrgcza 'iiﬁ?ro:jr\ﬂgig(rzgszl[)l &3
also adds attributesbest reg  (optimal regularization  cca wrain((datasetl, dataset2, dataset3])

coe cient) and best_numCC (optimal number of canonical  cca.validate([test_datasetl, test_dataset2,

components). test_dataset3])
cca.compute_ev([test_datasetl, test_dataset2,
3.2.2. Pyrcca Validation test_dataset3])

. . . "p lysis.hdf5"
Thevalidate() method assesses the CCA mapping that was ;cilzsyes(essio)gcca—anays'S )

estimated using therain() method by performing cross-  import rcca

dataset prediction with test data and canonical weights (for cca = rcca.CCACrossValidate()

details on cross-dataset prediction, see Section 2.4). €Ehelata  ccaload(  "Pyrcca_analysis.hdf5” )
are passed to the method as a list of NumPy two-dimensional

arrays (number of samples by number of dimensions), in the4 PYRCCA USAGE EXAMPLE

same order as the training data. This method is the same for th

rcca.CCA - and rcca. CCACrossValidate object classes. g jljystrate the use of Pyrcca with realistic data, we corcsed
The code below shows how validation is implemented in Pyrccgy, linearly dependent datasets and used Pyrcca to nd linear
import  rcca relationships between them. The goal of this analysis was
cca = rcca.CCACrossValidate(regs=[1e-3, to evaluate whether Pyrcca can identify and characterize th
le-2, le-1], numCC=[2, 3, 4]) relationship between two arti cially constructed datasethie
EEZ'U:I'igg?;t[?:;tla a?:StZtsf tztégaza;:giz rows of the datasets correspond to the number of samples in
test_dataset3]) T ' the datasets, and the columns correspond to the number of
. ) dataset dimensions. In the specic example of cross-subject
The validate() method adds two attributes to the CCA comparison of BOLD responses, described in Section 5, each
object: preds  (cross-dataset predictions) andcorrs dataset represents BOLD responses collected from an individu
(correlations of the cross-dataset predictions and the actu subject. In this case, the samples correspond to the timepofnts
test data). BOLD responses, and the dimensions correspond to voxels.

. . . . To create the datasets, we rst randomly initialized two
3.2.3. Computing Explained Variance in Pyrcca ) i
. . latent variables and two independent components. We then
The compute_ev() method estimates the variance L
. N .~ constructed each of the two datasets by combining both taten
explained R) in the test data by each of the canonical _ . .
components. The test data are passed to the method as a I\|/s%”ableS and one of the independent components. If Pyrcca
of NF:,ImP t.wo-dimensional arrg s (number of samples bW rks as expected then it should capture the relationship
y . . y PIeS DY otween the dataset by recovering two canonical components
number of dimensions), in the same order as the training . .
- . corresponding to the two latent variables.
data. This method is the same for thexca.CCA ~and This example is implemented in a Jupyter notebook included
rcca.CCACrossValidate object classes. The code below. P P Py

shows how variance explained is estimated: in the Pyrcca GitHub repository (http://github.com/gallaali/
P ’ pyrcca). We encourage the reader to use the notebook to explore

import  rcca this example interactively.
cca = rcca.CCACrossValidate(regs=[le-3, )
le-2, le-1], numCC=[2, 3, 4]) 4.1. Pyrcca Usage Example Analysis

cca.train([datasetl, dataset2, dataset3])

X Two interdependent datasets with 1000 samples were
cca.validate([test_datasetl, test_dataset2, . R L

test_dataset3]) constructed by combining two latent variables and additibn
cca.compute_ev([test_datasetl, test_dataset2, independent components. The rst dataset had four dimensions,

test_dataset3]) and the second dataset had ve dimensions. Each dimension
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of each dataset was constructed as a weighted sum of anTaken together, these results show that Pyrcca recovers the
independent component (25%) and one of the two latenstructure of the relationships between the datasets de nethb
variables (75%). The rst latent variable was used to comstru two latent variables.

dimensions 1 and 3 of the rst dataset and dimensions 1, 3, and

5 of the second dataset. The second latent variable was osed .

construct dimensions 2 and 4 of both the rst and the second4-3' Pyrcca Usage Example with

dataset. The independent components and the latent variablésross-Validation

were all drawn randomly from a Gaussian distribution usihgt It is possible to use cross-validation to nd the optimal

numpy.random.randn() method. The code below shows regularization coe cient and the optimal number of component
how the latent variables and independent noise componentmpirically. In the analysis described in Section 4.2, the
were initialized and how the datasets were created. regularization coe cient was set to 0. However, it may be usef
import  numpy as np to use _regularlzatlon this anaIyS|s to relax the orthogipal
nSamples = 1000 constraint between the canonical components. Becausetti la
latvarl = np.random.randn(nSamples,) variables were randomly drawn from a Gaussian distribution,
latvar2 = np.random.randn(nSamples,) they may not be orthogonal. Thus, regularized CCA may be
indepl = np.random.randn(nSamples, 4) optimal for capturing the true structure of the similarities
indep2 = np.random.randn(nSamples, 5) he d W df | for th et
datal = 0.25 =*indepl + 0.75 «np.vstack((latvard, betwgent e datasets. We tested four values for the regatemn
latvar2, latvarl, latvar2)).T coe cient: 0, 1%, 1¢%, and 16.
data2 = 0.25 xindep2 + 0.75 = np.vstack((latvarl, Additionally, in the analysis described in Section 4.2, the
latvar2, latvarl, latvar2, latvarl)).T canonical correlations showed that the rst two canonical
Each dataset was divided into two halves: a training set dasta components captured meaningful relationships between the
set. The code below shows how the datasets were split: datasets, whereas the third and the fourth component did not.
) We used cross-validation to test all possible numbers of cizad
trainl = datal[:nSamples/2] ts 1 2 3 d 4t ifv that t ts i
train2 = data2[:nSamples/2] components: 1, 2, 3, and 4, to verify that two components is
testl = datal[nSamples/2:] indeed optimal.
test2 = data2[nSamples/2:] The code below shows how the analysis with cross-validation

Pyrcca was used to estimate a CCA mapping between the wWiEs implemented:

training datasets. Kernelization and regularization westused. _ . _

. . X ccaCV = rcca.CrossValidate(kernelcca = False,
The maximum possible number of canonical components (four) humCCs = [1, 2, 3, 4],
was found. The quality of the mapping was quanti ed using regs = [0, le2, le4, 1le6])
cross-dataset prediction with the test datasets. The cobtevbe ccaCV.train(ftrainl, train2])
shows how the analysis was implemented: testcorrsCV = ccaCV.validate([testl, test2])

import  rcca

The analysis was run 1000 times, with random data generated
nComponents = 4

cca = rcca.CCA(kernelcca = False, on each iteration. The optimal regularization coe cient keab
reg = 0., numCC = nComponents) on cross-validation results varied for di erent initialitans of
cca.train([trainl, train2]) the data, but it was greater than zero for over 90% of the
testcorrs = cca.validate([testl, test2]) iterations. The variation of the optimal regularization ctient
was expected because the level of orthogonality between the
4.2. Pyrcca Usage Example Results latent variables varies for each instantiation.

The results of the analysis were evaluated in two ways.,, Riest The optimal number of components was two for
examined the canonical correlations to determine the nundfe 97% of the iterations, based on cross-validation results.
meaningful canonical components recovered by Pyrcca. SecorThis result was consistent with the ndings described in
we quanti ed cross-dataset prediction performance to deteen Section 4.2 and showed that Pyrcca was able to recover the
whether the mapping estimated by Pyrcca was valid for held-outlationships between the datasets prede ned by the two faten
data. variables.

The rst two canonical correlations were both 0.95, while The canonical correlations and test set prediction
the third and the fourth canonical correlations were 0.10correlations were comparable to the analysis with prede ned
and 0.00, respectively. This result shows that the rst twdyperparameters described in Section 4.2. Canonical ctioeta
canonical components capture meaningful relationships betwe were 0.95 for both components. The test set prediction
the datasets, while the third and the fourth canonical comgruis  correlations ranged between 0.90 and 0.94 for each dimeiagio
do not. Cross-dataset prediction with test datasets waslyighthe datasets.
accurate. The correlations of the predicted and actual loeit- The example described here is abstract by design. It is merely
data ranged from 0.90 to 0.93 for each dimension of the twintended to demonstrate how Pyrcca can be used to describe
datasets. This result shows that the mapping estimated byc®yrcrelationships between any timeseries data. In the nextaegcti
is valid for held-out datasets that depend on the same latente show how Pyrcca can be applied to a concrete data analysis
variables. problem in neuroimaging.
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5. CROSS-SUBJECT COMPARISON IN The code for running the analyses described in this section
fMRI USING PYRCCA is implemented in a Jupyter notebook that is included in the
Pyrcca GitHub repository (http://github.com/gallantlabkoga).

CCA has many potential applications for neuroimaging datal'he user should be aware, however, that this is a computdtjona
analysis. In this article, we focus on one particular neuging  intensive analysis that will take a very long time to run on ayen
analysis problem: cross-subject comparison in an fMRHesktop computer. The full analysis presented here was run on a
experiment. In a typical fMRI study, data are collected fromdistributed computing cluster.
multiple participants. Thus, there is a pressing need to compare
and combine data across individuals. The most common metho®.1. fMRI Experiment
for comparing measurements from individual brains is toThe design and methods of the fMRI experiment were described
resample the spatiotemporal data from individual subjects to & detail in an earlier publication from our laboratorji(shimoto
common anatomical template. These resampled, transformest al., 201). In brief, fMRI responses were recorded from
data are then averaged to obtain a group map. This proceduttbree subjects who watched natural movies in a 4 Tesla Varian
increases statistical power in regions of the brain where th®IRI scanner at UC Berkeley. Functional BOLD responses were
transformation tends to aggregate signal across indiguaut  collected at 1 Hz. The scanning volume covered the posterior-
it decreases power in brain regions that are more variablesacr ventral quarter of the head with a 6464 18 matrix. The analysis
individuals. Signal variability stems from two sourcesustural  included only cortical voxels for each subject. The coltioxels
di erences in brain anatomy and di erences in BOLD (blood were identi ed by manually aligning functional and anatasal
oxygen level dependent) signal intensity. Both anatomical a volumes for each subject in Pycortesgo et al., 20)5and
functional variability complicates results obtained by @mmaical then selecting the functional voxels that overlapped with the
normalization. anatomical cortical mask. This procedure produced 34,40@&/gox

To improve anatomical template registration, most modernfor subject 1, 30,373 voxels for subject 2, and 33,356 véoeels
fMRI studies use nonlinear registration algorithms that optim  subject 3.
alignment of brain curvature across subjec&€ve and Fischl, The functional data were corrected for subject motion in
2009; Fischl, 20)2However, these anatomical methods do notFSL (Jenkinson and Smith, 2001; Jenkinson et al., 2002; Greve
address functional variation in BOLD signal that is lesedity and Fischl, 2008before alignment with the anatomical volume.
tied to the underlying anatomy. There are several crosgestib Median detrending was used to remove low-frequency noise
alignment methods that instead rely on correlations betweefrom the data. Training and test data for each subject were
functional responses, such as hyperalignment and similaritgollected in alternating scans. The training movies werexsho
space alignment{axby et al., 2011; Raizada and Connolly, 2012once. The test movies were shown ten times, and the responses
Conroy et al., 2013 However, these methods usually requirewere averaged to increase signal to noise ratio. The training
anatomical template registration as a precursor to analysisy T responses spanned 7200 timepoints (7200 s), and test responses
also assume a voxel-to-voxel correspondence of brain patterspanned 540 timepoints (540 s) after averaging. The subjects
across subjects. Additionally, these methods do not retleal provided written informed consent. The experimental protocol
underlying structure of the similar brain responses, butyonl was approved by the Committee for the Protection of Human
quantify their similarity. Subjects at University of California, Berkeley.

Cross-subject comparison by CCA can nd underlying
relationships among datasets recorded from di erent sulgént 5.2, Cross-Subject Comparison Methods
the same experiment. Because CCA does not require datasPigrcca was used to nd a cross-subject CCA mapping among
to have equal dimensionality, individual subject data da nothe training BOLD responses of the three experimental subject
need to be resampled to an anatomical template before analysi® reduce the computational complexity of the analysis, a
Furthermore, the resulting canonical coordinate space can Hinear (inner product) kernel was used. Regularization was used
used to obtain a clear interpretation of the underlying semiies  because of the kernelization and because the number ofetatas
in fMRI responses of individual subjects. dimensions (voxels) outnumbered the number of dataset saspl

In this section, we demonstrate how to use Pyrcca softwar@gimepoints). The optimal hyperparameters for the analysisewer
to perform CCA on neuroimaging data. We used Pyrcca tachosen using grid search with cross-validation. The optimal
perform cross-subject comparison of fMRI data collected fronregularization parameter was chosen from a logarithmically
three individuals while they watched natural moviéishimoto  spaced range of ten values between 10 4 and 1 1%
et al., 201)L This dataset is available publicly{lihimoto et al., The optimal number of components was chosen from a linearly
2019. We estimated canonical components across subjects gpaced range of eight values between 3 and 10 components. We
order to identify commonalities in patterns of brain resposse selected these ranges based on pilot analyses performed on an
To provide further evidence of the veracity of our results, wandependent dataset that was not used for this publication.
then used the recovered canonical component space to predict To initiate the analysis, an instantiation of the class
each individual subject's responses to novel movies based oita.CCACrossValidate was created with the
the other subjects' responses. Finally, we examined regulti hyperparameters described above. The CCA mapping was
canonical weights on each subject's cortical surface anddfo estimated using thetrain() method with the training
that the canonical components revealed retinotopic orgaidna BOLD responses for all three subjects. The mapping was tested
in each subject. by performing cross-dataset prediction on the held-out test
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BOLD responses, using thealidate() method. Finally, The correlations for each subject were also plotted as a héstag
to evaluate the in uence of each canonical component on th&o evaluate whether the prediction accuracy was signi crg,
BOLD responses of each subject across the cortical surfacerrelations were subjected to an asymptotic signi cansé te

the explained variance for each voxel was quanti ed using the Figure 2 shows the results of the cross-subject prediction.
compute_ev() method for all three subjects. The explainedPanel A shows the cortical map for subject 1, with the color
variance was evaluated using the held-out test BOLD responsef each voxel representing the correlation of the predicted an

The analysis code is shown below. actual responses for that voxel. The predicted responses in the
import  rcca visual cortex voxels were highly accurate, as expected itueaha
cca = rcca.CCACrossValidate(kernelcca = True, movie experiment. Panel B shows an overlayed histogram of
regs = np.logspace(-4, 2, 10), the prediction correlation values for all three subjectsthwi
numCCs = np.arange(3, 11)) correlation values for each subject plotted in a di erent golo
cca.train([training_datal, training_data2, L. . . .
training_data3]) The prediction performance is consistent across subjectsdBase
corrs = ccavalidate(ftest_datal, test_data, on the asymptotic signi cance test of the prediction corraas,
test_data3]) 11,134 voxels were predicted signi cantly for subject 1,8915
ev = cca.compute_ev([test_datal, test_data2, voxels for subject 2, and 9360 voxels for subjegb 3( 0.05,
test_datag)) corrected for multiple comparisons using False Discovery Rate).
. . Signi cant accuracy of cross-subject predictions demorisga
5.3. Cross-Subject Comparison Results that Pyrcca can be used to predict BOLD responses to novelvisua

Cross-validation was used to determine the optimaktimyli based on cross-subject similarity and without apleit
hyperparameters. The optimal regularization coe cient ypodel.

was 0.01, and the optimal number of canonical components was

3. The results of the analysis were evaluated in three ways: b ] )

quantifying cross-subject prediction, by examining theaaigal ~ 2-3-2. Canonical Weight Maps

weight maps, and by examining explained variance maps forh€ canonical components estimated by Pyrcca were examined
each canonical component. by plotting the voxelwise canonical weights on the subjects'

cortical maps. Three canonical components were estimated
5.3.1. Cross-Subject Prediction in the analysis, making it possible to use a single cortical
The results of cross-subject prediction on held-out dataevermap to visualize all canonical components at once. One
examined by plotting the voxelwise correlations of the alcimal  color channel (red, green, or blue) was assigned to each
predicted BOLD responses on the cortical maps of the subjectsanonical component and the canonical weights for all three

rm R:mﬁor B 9000 Prediction performance across voxels
I . < [ Subject1
inferior 8000+ Subject 2|
7000} [ Subject 3|
(%]
o
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o
>
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)
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=
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.8 -06 -04 -02 00 02 04 06 08 1.0
oo 10 Prediction correlation
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FIGURE 2 | Accuracy of cross-subject prediction with Pyrcca . (A) Cross-subject prediction performance for subject 1 plottel on a attened cortical map. The

cortical map was created by digitally in ating the cortical arface of each hemisphere of the brain of subject 1, and then @king relaxation cuts to create a at map.
Only the occipital lobe is shown here. Known regions of intest were identi ed in a separate retinotopic mapping experirant and are outlined in white. Each location
in the cortical map represents a single voxel. The color of &4 voxel corresponds to the correlation between the held-ouBOLD responses and responses predicted
from the corresponding BOLD responses of subjects 2 and 3, ad the estimated canonical components. Correlations for voals in which prediction accuracy fell
below the signi cance threshold ¢ < 0.05, corrected for multiple comparisons) are set to 0. The sbject's responses are well predicted for voxels throughotuthe
visual cortex.(B) Cross-subject prediction performance for all subjects plted as an overlayed histogram. The correlations for subjed are plotted in red, the
correlations for subject 2 are plotted in blue, and the corrations for subject 3 are plotted in green. The black vertiddine indicates the threshold of statistical

signi cance (p < 0.05, corrected for multiple comparisons). Cross-subjecprediction accuracy is consistent across subjects. This gue demonstrates that Pyrcca can
be used to accurately predict BOLD responses to novel visuatimuli based on cross-subject similarity.
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canonical components for each voxel were plotted using an RGie located in retinotopic areas that represent the periphery of
colormap. the visual eld. Green voxels are primarily described by the

Figure 3 shows the canonical weights for all three canonicasecond component. These are located in V1, the rst stage of
components estimated by Pyrcca plotted on the cortical map fovisual processing in the cerebral cortex. Blue voxels aregpifiyn
subject 1. The red channel represents the voxel's canongghtv  described by the third component. These tend to be located
for the rst canonical component, the green channel representin the foveal retinotopic areas and in area KT a motion-
the voxel's canonical weight for the second canonical coreptn selective cortical region. Purple voxels (red and blue coetb)
and the blue channel represents the voxel's canonical weighte described by both the rst and the third component. These
for the third canonical component. The ranges of the candnicatend to be located in MT and the intraparietal sulcus, areas that
weights were balanced by rescaling each set of the canonipmbcess visual motion and that regulate spatial attention.
weights to span the range from zero to one. The absolute value
of the canonical weights was taken to adequately visudiige t5-3.3. Explained Variance Maps
contribution of the negative and positive weights. The résgl Each canonical component was visualized individually by
color of each voxel shows how much its response is describédptting the canonical weights on the subjects’ cortical maps,
by each of the three canonical components in relation to onéogether with the variance of the held-out responses for each
another. voxel that was explained by that canonical component.

The three canonical components estimated by Pyrcca capture Each panel in Figure 4 shows one of the canonical
distinct retinotopic patterns in the BOLD responses. Red voxeléomponents visualized on the cortical map of subject 1. Each
are primarily described by the rst component. These tend tovoxel is colored according to a two-dimensional colormap. The
hue of the voxel represents its canonical weight for one cexabn
component. The hue ranges from blue for negative weights, to
white at zero, to red for positive weights (note that the costra
between the negative and positive weights is meaningful, but
the sign is arbitrary). The brightness of each voxel represen
the variance of the held-out BOLD responses of that voxel that
could be explained by that canonical component. The variance
ranges from 0 to 75%. The resulting maps demonstrate how well
each voxel's response can be described by each of the cdnonica
components.

The rst component, plotted in panel A, best explains
responses of the voxels that represent the visual periphery. The
second component, plotted in panel B, best explains a contrast
between voxels located in V1 and voxels located inGvidnd
intraparietal sulcus. The third component, plotted in panel C,
explains a contrast between voxels that represent the visuehf
and those located in MT and intraparietal sulcus.

5.3.4. Summary of Results

Taken together, these ndings reveal the similarity of BOLD
responses across individual subjects. The prediction cirosl
map in Figure 3 demonstrates that novel BOLD responses to
natural movies can be predicted based on cross-subjecesityil
The canonical weight map ifrigure 3 describes the variation
of the BOLD responses to natural movies in terms of the
estimated canonical components. The map§Eigure 4describe
the contribution of each canonical component to the variatio
FIGURE 3 | Cortical map of voxelwise canonical weights. ~ The canonical BOLD responses. These maps reveal retinotopic variation in the
weights for all three canonical components estimated by Pgca are shown on responses. Pyrcca allows us to uncover interpretable diroessi

a attened cortical map for subject 1. Each of the canonical canponents is . . K
) . . of shared BOLD responses to a complex visual stimulus in a
assigned to one color channel. The rst canonical components represented

by the red channel, the second canonical component is represnted by green, data-driven way, without imposing an eXpliCit model.
and the third canonical component is represented by blue. Tirs, the color of
each voxel re ects its canonical weights for all three canoweal components, as

shown in the three-dimensional RGB colormap at the center athe gure. 6. CONCLUSION

Canonical weights have been rescaled to span the range fromezo to one,

and the absolute value of the weights has been taken. This maghows how In this article, we introduce Pyrcca, a Python module for
the BOLD responses of each voxel are described by the three cwnical performing regu|arized kernel canonical correlation am‘gy
components. The recovered map reveals retinotopic organation of the visual with a cross-validation method for hyperparameter selection

cortex.

Pyrcca can be used to quantify similarity across datasets@n

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2016 | Volume 10 | Article 49



Bilenko and Gallant Pyrcca: Canonical Correlation Analysis in Python

FIGURE 4 | Cortical maps of canonical weights and variance exp lained by each canonical component.  Each panel shows both the canonical weights for
one of the estimated canonical components and the variance fthe held-out BOLD responses that was explained by that caneical component. Each voxel is colored
according to a two-dimensional colormap shown in the centeof each panel. The hue represents the canonical weight of edcvoxel. Blue indicates negative
canonical weights, white indicates zero weights, and red iicates positive canonical weights. The canonical weightbave been rescaled to span the range from 1

to 1. The brightness re ects the variance of each voxel's helebut BOLD responses that is explained by that canonical compnent. The variance ranges from 0 to
75%. (A) The rst component best explains responses of the voxels thatepresent the visual periphery(B) The second component best explains a contrast between
responses of voxels located in V1 and those located in MT and intraparietal sulcus(C) The third component explains a contrast between voxels thatepresent the
visual fovea and those located in MT and intraparietal sulcus.

predict novel data via cross-dataset mapping. We demonstraféhe examples described in the article can be found in a Jupyter
Pyrcca on an arti cial example, where we use it to estimatedin notebook in the GitHub repository. The fMRI data analyzed in
relationships between two datasets. In a second examplepme shthis article are available on a shared public repository: Http:/
how Pyrcca can be used to nd shared dimensions of individuatrcns.org {ishimoto et al., 201}

subject fMRI responses to a natural movie experiment. These

dimensions are interpretable and can be used to predict novlUTHOR CONTRIBUTIONS

subject responses to a held-out stimulus.

Cross-subject comparison demonstrates only one applicatioNB wrote the Pyrcca software, designed and conducted the
of Pyrcca to neuroimaging data analysis. There are mangnalyses, and created the gures. JG supervised the resedch. N
neuroimaging questions that can be addressed by using &yrcand JG wrote the manuscript.
to nd relationships between interdependent neuroimaging
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